1 Fundamentals of Error Correcting Codes

Alice wants to transmit a message $m \in M$ over a noisy channel to Bob. To ensure that Bob is able to recover the message m, instead of sending m over the channel, she sends $c = \text{enc}(m)$. On the other side of the channel, Bob receives c', the corrupted version of c. He then uses the error correction algorithm to recover c and runs decode to recover $\text{dec}(c) = m$.

$$m \in M \xrightarrow{\text{encode}} c = \text{enc}(m) \xrightarrow{\text{flip} \leq r \text{ bit}} \text{noisy channel} \xrightarrow{\text{error correct}} c' \xrightarrow{\text{decode}} m = \text{dec}(c)$$

It is common to refer to the image of enc as the code.

Remark 1.1. The noisy channel can be modelled as a stochastic process which changes each input into the channel with probability p. However, in theoretical computer science we generally consider the worst case (adversarial) setting.

Definition 1.2. A code C is a $(n, k, d)_q$ code if $C \subseteq \Sigma^n$ where $|\Sigma| = q$, $k = \log_q(|M|)$, and $x, y \in C \Delta(x, y) \geq d$.

Remark 1.3. n is refereed to as the block length, k as the dimension, and d as the distance. $c \in C$ is refereed to as a codeword.

Claim 1.4. It is possible to correct $r \leq \frac{d-1}{2}$ errors using a $(n, k, d)_q$ code C.

Error Correction Alg: output $c^* \in C$ which minimizes $\Delta(c^*, c')$ where c' is the corrupted message.

We will now show that $c^* = c$. Suppose $c^* \neq c$. Then by the triangle inequality

$$\Delta(c^*, c) \leq \Delta(c^*, c') + \Delta(c', c)$$

$\Delta(c', c) \leq r$ since the channel flips at most r bits. $\Delta(c^*, c') \leq r$ since $\Delta(c^*, c') = \min_x \Delta(x, c') \leq \Delta(c, c') \leq r$. Therefore

$$\Delta(c^*, c') + \Delta(c', c) \leq r + r = \frac{d-1}{2} + \frac{d-1}{2} = d - 1 < d$$

This implies that there are two distinct codewords c and c^* whose distance is less than d. This contradicts the fact that C is a $(n, k, d)_q$ code. Therefore, $c = c^*$.

Observation 1.5. We have shown that the proposed error correction algorithm is correct but this is still a sub-optimal result, as we have not shown that it is efficient. Showing that error correction is efficient may be challenging.

Geometrically, Our error correction algorithm draws a ball of radius $\frac{d-1}{2}$ around c' and outputs the codeword in that ball. In our case, we are guaranteed that there will only be one codeword in that ball. This is what is refereed to as a uniquely decodeble code. However, if we relax that, we may be able to create an algorithm that looks at a polynomial number of codewords in a ball of radius $\frac{d-1}{2}$ around c' and chooses a reasonable one.
2 Existence of Good Codes

Definition 2.1. The rate of an \((n, k, d)_q\) code is \(r = \frac{k}{n}\).

Definition 2.2. The relative distance of an \((n, k, d)_q\) code is \(\delta = \frac{d}{n}\).

Notice that the rate of a code is always \(\leq 1\).

We consider a code "good" if rate and relative distance are constants \((\Omega(1))\).

Theorem 2.3. There exist good codes. More formally, \(\forall n \in \mathbb{N}, \exists (n, k, d)_2\) codes with \(\frac{d}{n}, \frac{k}{n} = \Omega(1)\).

We will prove this by the probabilistic method. We will show that there is constant rate \((r)\) and constant relative distance \((\delta)\) such that for all \(n\), a random code with those dimension \(k = nr\) has a non-zero probability of having distance \(n\delta\).

\(K = 2^k\). Pick \(v_1, v_2, \ldots, v_K\) randomly and independently from \(\{0, 1\}^n\). Notice that

\[\mathbb{E}[\Delta(v_i, v_j)] = \frac{n}{2}\]

Since each bit of \(v_i\) and each bit of \(v_j\) is chosen at random, the expected value of the distance of the bits is \(\frac{1}{2}\). Thus the expected value of the sum of the distance of the bits is \(\frac{n}{2}\).

We are interested in the event that our code is bad, that the distance between 2 vs is low. We will refer to the event \(\Delta(v_i, v_j) < \frac{n}{2}(1 - \epsilon)\) as \(BAD_{ij}\). We can use the Chernoff bound to bound the probability of such an event

\[\mathbb{P}[BAD_{ij}] = \mathbb{P}[\Delta(v_i, v_j) < \frac{n}{2}(1 - \epsilon)] \leq 2^{-\Omega(c'^2 n)}\]

The code is bad if any of the codewords are too close to each other, in other words, if any \(BAD_{ij}\) event occurs. Thus the probability that a code is bad is

\[\mathbb{P}[\bigcup_{i \neq j} BAD_{ij}]\]

By the union bound we have

\[\mathbb{P}[\bigcup_{i \neq j} BAD_{ij}] \leq \left(\begin{array}{c} K \\ 2 \end{array}\right) 2^{-\Omega(c'^2 n)}\]

We merely need to find \(k\) such that \(\left(\begin{array}{c} K \\ 2 \end{array}\right) 2^{-\Omega(c'^2 n)} < 1\). Since \(K^2 > \left(\begin{array}{c} K \\ 2 \end{array}\right)\), it suffices to find \(k\) such that \(K^2 2^{-\Omega(c'^2 n)} < 1\).

\[K^2 2^{-\Omega(c'^2 n)} < 1 \iff 2^k 2^{-\Omega(c'^2 n)} < 1 \iff k = c''(\epsilon) n\]

Where \(c''\) is some function of \(\epsilon\). We have shown the rate is \(c''(\epsilon) = \Omega(1)\).

The distance of the code is \(\frac{1-\epsilon}{2} n\) since no two codewords have distance greater than \(\frac{n}{2}(1 - \epsilon)\). This tells us that the relative rate is \(\frac{1-\epsilon}{2} = \Omega(1)\).
3 Reed-Solomon Codes

Reed-Solomon codes are \((n, k, d)_q\) codes where \(q \geq n\) and \(\Sigma = \mathbb{F}_q\). The Reed-Solomon code with block length \(n\) and dimension \(k\), denoted \(RS_{n,k}\), is a subset of \(\mathbb{F}^n\). We will now provide a construction of \(RS_{n,k}\).

Construction 3.1. Fix \(\mathbb{F}^n\). To encode the message \(\hat{a} = (a_1, a_2, \ldots, a_{k-1})\) where \(a_i \in \mathbb{F}\), construct the polynomial \(P_a(x) = \sum_{i=0}^{k-1} a_i x_i\). The codeword \(C_a = (P_a(\alpha_1), P_a(\alpha_2), \ldots, P_a(\alpha_n))\).

In this construction \(S\) does not depend on the message, it is fixed.

Question 1. What is the distance of \(RS_{n,k}\)? In other words, what is the closest 2 codewords in \(RS_{n,k}\) can be?

This can be framed as an optimization problem:

\[
d = \min_{\hat{a} \neq \hat{b}} \Delta(C_a, C_b) = \min_{\hat{a} \neq \hat{b}} |\{x \in S| P_a(x) \neq P_b(x)\}|
\]

If \(P_a(x) = P_b(x)\), then \(P_a(x) - P_b(x)\) has a root at \(x\). Since the degree of \(P_a(x) - P_b(x)\) is at most \(k - 1\), and \(P_a(x) - P_b(x)\) has at most \(k - 1\) roots. Thus, there are at most \(k - 1\) values for \(x\) such that \(P_a(x) = P_b(x)\), and always at least \(n - (k - 1) = n - k + 1\) values of \(x\) such that \(P_a(x) \neq P_b(x)\). Therefore

\[
d = \min_{\hat{a} \neq \hat{b}} \Delta(C_a, C_b) = \min_{\hat{a} \neq \hat{b}} |\{x \in S| P_a(x) \neq P_b(x)\}| \geq n - k + 1
\]

Remark 3.2. This is actually the best distance that can be achieved (via the well-known Singleton bound).

Question 2. Can \(RS_{n,k}\) be used to get good binary codes?

\(RS_{n,k}\) encodes field elements into field elements. But what if we want to transmit messages in binary \((q = \mathbb{F}_2)\)? Simply represent the field elements using binary. \(x \in \mathbb{F}_q\) can be represented using \(\log_2(q)\) bits. Thus the encode function goes from having signature \(\text{enc} : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n\), to having the signature \(\text{enc} : \{0, 1\}^{k \log_2(q)} \rightarrow \{0, 1\}^{n \log_2(q)}\)

Notice that the distance of the code remains unchanged but the relative distance \(\delta = \frac{n - k + 1}{n \log_2(q)} \approx \frac{1}{\log_2(n)}\) decreases. Intuitively, the problem is that a flip of any of the bits in the encoding of a field element results in it being turned into a different field element. Ideally, we want to have to flip many of the bits in an encoding of a field element to turn it into a different element. But we already know how to achieve that: error correcting codes! We will send each binary encoding of a field element using an optimal error correcting code (encoding just \(\log n\) bits). Consequently, one can show that this leads to constant relative distance.

4 Linear Codes

Definition 4.1. \(\mathcal{C} \subseteq \mathbb{F}^n\) is a linear code if \(\mathcal{C}\) is a linear subspace.

Linear codes are denoted with square brackets, \([n, k, d]_q\). In this case \(k\) is the dimension of \(\mathcal{C}\) and \(q = |\mathbb{F}|\).

Definition 4.2. The Hamming weight of a codeword \(c\) is the number of non-zero symbols in the codeword.
We note that the distance \(d = \min \text{ weight codeword in } \mathcal{C} \).

Notice that this is a natural and equivalent definition of distance since the minimum distance between any two codewords is the same the the min weight over all code words. This is because \(\Delta(c_1, c_2) = \Delta(c_1 - c_2, 0) \). Since \(\mathcal{C} \) is is linear and \(c_1, c_2 \in \mathcal{C}, c_1 - c_2 \in \mathcal{C} \). Call \(c_1 - c_2 \) the codeword \(c_3 \). thus \(\Delta(c_1, c_2) = \Delta(c_1 - c_2, 0) = \Delta(c_3, 0) = \text{weight}(c_3) \).

Remark 4.3. One can show that good linear codes exist by using the probabilistic method.

Claim 4.4. Reed-Solomon codes are linear.

The fact that the sum of two codewords is another codeword is follows easily from \(P_a + P_b = P_{a+b} \).