1 Introduction

Expander graphs are graphs that are both sparse and well connected. By sparse we mean that they have $O(N)$ edges (where N is the number of edges in the graph). There are several different (yet connected) definitions of well connected which we will see throughout the lecture.

2 Vertex Expansion

For the duration of the lecture, we will be considering directed D-regular graphs.

Definition 2.1. For a graph $G = (V, E)$, we define the neighbor set of a vertex $u \in V$ as $N(u) = \{v : (u, v) \in E\}$. We define the neighbor set of a set of vertices $S \subseteq V$ as $N(S) = \bigcup_{u \in S} N(u)$.

Definition 2.2. G is a (K, A) vertex expander if for all $S \subseteq V$ such that $|S| \leq K$, $|N(S)| \geq A|S|$.

Notice that the property that $|S| \leq K$ is necessary because otherwise $A = 1$ (because then we can have the case where $S = V$).

Intuitively, a G is a vertex expander if when we look at a subset of vertices S, we can always reach more vertices if we take a step from inside the set S.

Remark 2.3. Edge expansion is very similar, it just requires you to think about the neighbors as the edges you can reach quickly form S rather than the vertices you can reach quickly from S.

Ideally, we would like $D = O(1)$, $A \approx D - 1$ and $K = \Omega(N)$.

We can show the existence of expanders by the probabilistic method.

However, we will cheat slightly and show the existence of bipartite expanders. A bipartite expander only requires that the expansion property only hold for subsets in the left side of the graph. We will also only require that the graph is left D-regular.

Theorem 2.4. for all $D = O(1)$, there exists an $\alpha = O(1)$ such that a random left D-regular bipartite digraph is an $(\alpha N, D - 1.1)$ vertex expander with high probability.

Let us consider the probability that for a fixed set S with $|S| = k$ that a random bipartite graph violates the expansion property. In other words that $|N(S)| \leq (D - 1.1)K$.

Notice that for $|N(S)| \leq DK - 1.1K$, there must be at least $1.1K$ repetitions in the edges that repeat a node, go to a node which has already been reached by a previous edge.

The probability that a given edge goes to a node that has been covered by a previous edge is bounded above by $\frac{KD}{N}$. Thus, the probability that a given set of edges cover $1.1K$ or more already covered nodes is bounded above by $(\frac{KD}{N})^{1.1K}$. Furthermore, there are $\binom{N}{1.1K}$ choices for the edges which will be repetitions. Thus, for a given S, the probability that there will be $1.1K$ or more repetitions is upper bounded by $\binom{N}{1.1K}(\frac{KD}{N})^{1.1K}$.

Now we will look at the probability that there exists any S with $|S| = k$, which violates the expansion property.
\[\mathbb{P}[\exists S, |S| = K, |N(S)| \leq (D - 1.1)K] \]

By the union bound this is

\[\leq \left(\frac{N}{K} \right) \left(\frac{N}{1.1K} \right) \left(\frac{KD}{N} \right)^{1.1K} \]

By the approximation for the binomial we can see that the above is less than or equal to

\[\leq \left(\frac{eN}{K} \right)^K \left(\frac{eKD}{1.1K} \right)^{1.1K} \]

\[= \left(\frac{e^{2.1}D^{2.2}}{1.1^{1.1}N^{0.1}} \right)^K \]

By making \(\alpha \) very small, we can make \(K \) arbitrarily small, thus we can make the following less than or equal to

\[\leq 11^{-K} \]

Finally, we can arrive at the probability that the expansion property is not violated for any set of size less than \(K \) as less than or equal to

\[\sum_{i=1}^{\alpha N} 11^{-1} \leq 0.1 \]

Thus with high probability (at least 90%) our graph is an expander. Thus, it exists.

3 Spectral Expansion

Definition 3.1. \(M \) is the random walk matrix of a graph \(G \) if \(M_{i,j} = \frac{\text{number of edges from } i \text{ to } j}{D} \).

\(M_{i,j} \) can be thought of as the probability you go from to node \(j \) if you are at node \(i \) and choose to travel along one of the edges with equal probability.

Let \(\pi = [p_1, p_2, \ldots, p_n] \), where \(p_i \) is the probability that you are at node \(i \).

\((\pi M) \) is then the probability that you are at node \(i \) after taking a random step in the graph having been in node \(x \) with probability \(p_x \) previously.

Let \(u \) be the vector that represents the uniform distribution on vertices, \(u = \left[\frac{1}{N}, \frac{1}{N}, \ldots, \frac{1}{N} \right] \)

Then we can define the expansion of the graph as

\[\lambda(G) = \max_{x \perp u} \frac{\|xM\|}{\|x\|} \]

Remark 3.2. Usually \(xM^n \) (the distribution after taking \(n \) steps in the graph) converges to a stationary distribution.

\(\lambda(G) \) can be thought of as how fast you converge to the uniform distribution for any \(\pi \). We will now see why.

\(\pi = u + x \), observe that \(u \perp x \) since \(\|x\| = 0 \)

Therefore \(\pi M = (u + x)M = u + xM \) and we know that \(\|xM^t\| \leq \lambda(G)^t\|x\| \). So how quickly the distribution converges to the uniform distribution is dependent in \(xM^t \) which is bounded by \(\lambda(G) \). So \(\lambda(G) \) tells us how quickly the distribution converges to uniform.
Remark 3.3. If you take an undirected graph and let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues of M, then $\lambda(G) = \lambda_2$.

Theorem 3.4. Spectral expansion implies vertex expansion. More precisely, for $\alpha \in [0,1]$, G is a $(\alpha N, \frac{1}{(1-\alpha)\lambda^2 + \alpha})$ vertex expander.

Notice that if $\lambda < 1$, you have $\frac{1}{(1-\alpha)\lambda^2 + \alpha} > 1$, which means we have expansion. Otherwise, we do not.

4 Mixing

Definition 4.1. A graph G has the mixing property if for 2 sets S and T where $|S| = \alpha N$ and $|T| = \beta N$, $\frac{e(S,T)}{ND} \approx \alpha \beta$. $e(S,T)$ is the number of edges between S and T.

Notice that in a random graph, you would expect the mixing property to hold.

Theorem 4.2. Spectral Expansion implies Mixing. More precisely $|e(S,T) - \alpha \beta| \leq \lambda p \alpha \beta (1-\alpha)(1-\beta)$ or the more useful bound $|e(S,T) - \alpha \beta| \leq \sqrt{\alpha \beta}$

Note that if $\lambda \approx 0$, then the density between S and T is very close to $\alpha \beta$.

Remark 4.3. Vertex expansion with strong parameters implies spectral expansion. In fact, to a certain degree any of the 3 definitions of expansion given in this lecture imply the other 2.

We will now present the proof that mixing implies spectral expansion

$1_S = [1_1, 1_2, \ldots , 1_n]$, where $1_i = 1$ if and only if $i \in S$.

$e(S,T) = 1_S^T A 1_T$

Where A is the adjacency matrix of M. $A = DM$. Therefore

$e(S,T) = 1_S^T DM 1_T$

The above is true because the left hand side is equal to the following

$\sum_{i,j} (1_S)_i (DM)_{i,j} (1_T)_j$

Notice that the expression expression in the sum gives the number of edges between i and j if i is in S and j is in T, and zero otherwise. Thus the sum gives the total number of edges between S and T.

Recall from linear algebra that we can write any vector v as $kv + v^\perp$, where $k = \sum v_i$.

Using this fact, we can rewrite out expression as

$$(\alpha N v + (1_{\frac{1}{N}}))^T DM (\beta N v + (1_{\frac{1}{N}}))^T$$

Expanding and combing terms we get

$$\alpha \beta N^2 D v^T M v \frac{1}{N} + ((1_S)_T)^T DM (1_T)_T$$

$$= \alpha \beta N^2 D \frac{1}{N} + ((1_S)_T)^T DM (1_T)_T$$
The first term now simplifies to $\alpha \beta N D$. All that remains is to bound the error term $((\mathbb{1}_S)^\perp)^T D M (\mathbb{1}_T)^\perp$.

By Cauchy-Swartz

$$((\mathbb{1}_S)^\perp)^T D M (\mathbb{1}_T)^\perp \leq \|(\mathbb{1}_S)^\perp\| D M \mathbb{1}_T \|

\leq \lambda D \|(\mathbb{1}_S)^\perp\| \mathbb{1}_T \|

By Pythagoras, we know $\|\mathbb{1}_S\| = \sqrt{\alpha(1 - \alpha)N}$. Thus we have

$$\leq \lambda D \sqrt{\alpha(1 - \alpha)N} \sqrt{\beta(1 - \beta)N}

= \lambda N D \sqrt{\alpha(1 - \alpha)\beta(1 - \beta)}$$