1 Hardness vs. Randomness Definitions

In this lecture, we explore the connection between constructing pseudorandom generators for a class of functions and constructing hard to compute functions against this class.

Definition 1.1. Let \(g : \{0,1\}^n \rightarrow \{0,1\} \) be a (\(S, \epsilon \)) hard function if for all circuits \(C \) of size less or equal to \(S \), \(\text{corr}(g,C) \leq \epsilon \) (i.e. \(\Pr_{x \sim U_n}[g(x) = C(x)] \leq \frac{1}{2} + \epsilon/2 \)).

Intuitively, a function \(g \) is hard to compute if no "small" circuit can do much better at computing the function than just guessing. This captures the notion of average-case hardness. When we just have the weaker guarantee that \(\text{corr}(g,C) < 1/2 \), we just say \(g \) is \(S \)-hard for \(C \). This weaker guarantee corresponds to worst-case hardness.

Definition 1.2. A generator \(G : \{0,1\}^{s(n,\epsilon)} \rightarrow \{0,1\}^n \) is \((S,\epsilon)\) pseudorandom if for all circuits \(C \) of size less than or equal to \(S \), \(|\mathbb{E}_{x \sim U_n}[C(G(x))] - \mathbb{E}[C(U_n)]| \leq \epsilon \).

Intuitively, a generator \(G \) is pseudorandom if no "small" circuit can distinguish the outputs of \(G \) from truly random bits with significant advantage.

Remark 1.3. We note that \(S, \epsilon \) are functions of \(n \), and what we really mean by \(g \) is actually a series of functions parameterized by \(n \): \(\{g_i\}_{i \geq 0} \).

Definition 1.4. Let \(L_n = \{ x : g_n(x) = 1 \} \subseteq \{0,1\}^n \). The language associated with \(g \) is \(L = \cup_{n \geq 0} L_n \subseteq \{0,1\}^* \). \(L \) is \((S,\epsilon)\) hard if \(g \) is \((S,\epsilon)\) hard.

2 Pseudorandomness Implies Hardness

Claim 2.1. Let \(G : \{0,1\}^n \rightarrow \{0,1\}^{n+1} \) be a \((S,\epsilon = 1/2 - \delta)\) pseudorandom generator, for any \(\delta > 0 \). Let \(T = G(\{0,1\}^n) \) (the image of \(G \)). Define \(f : \{0,1\}^{n+1} \rightarrow \{0,1\} \) as follows: \(f(x) = 1 \) if \(x \in T \) and \(f(x) = 0 \) if \(x \notin T \). \(f \) is \((S,\epsilon)\) hard.

We will show the above by contradiction. We will assume that \(f \) is not hard (that there is a series of small circuits that compute it) and then show that this implies that \(G \) is not \((S,\epsilon)\) pseudorandom.

Proof: Assume that \(f \) is not \(S \)-hard. Let \(C \) be the circuit of size \(\leq S \) such that \(C(x) = f(x) \) for all \(x \). We will now show that \(C \) breaks \(G \).

Notice first that \(\mathbb{E}[C(U_{n+1})] \leq \frac{1}{2} \) since \(\mathbb{E}[C(U_{n+1})] \) is the fraction of strings in \(\{0,1\}^{n+1} \) on which the circuit outputs 1. The circuit only outputs 1 when \(f \) outputs one, and \(f \) only outputs one when the input string is in the image of \(G \). There are at most \(2^n \) strings in the image of \(G \). Thus, the fraction of strings on which the circuit accepts is \(\leq \frac{2^n}{2^{n+1}} = \frac{1}{2} \). Therefore, \(\mathbb{E}[C(U_{n+1})] \leq \frac{1}{2} \).

Secondly, notice that \(\mathbb{E}_{x \sim U_n}[C(G(x))] = 1.C \) outputs 1 when its input is in the image of \(G \). Clearly, \(G(x) \) is in the image of \(G \), thus \(C(G(x)) \) is always 1 and \(\mathbb{E}_{x \sim U_n}[C(G(x))] = 1 \).

Therefore
\[
\left| \mathbb{E}_{x \sim U_n} [C(G(x))] - \mathbb{E}[C(U_n)] \right|
= \mathbb{E}_{x \sim U_n} [C(G(x))] - \mathbb{E}[C(U_n)]
\geq 1 - \frac{1}{2} = \frac{1}{2}
\]

This provides the necessary contradiction to our assumption that \(G \) is a \((S, 1/2 - \delta)\) pseudorandom generator.

3 Hardness Implies Pseudorandomness

We now prove the more interesting direction.

Claim 3.1. Suppose \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is \((S, \epsilon)\) hard. Then \(G : \{0, 1\}^n \rightarrow \{0, 1\}^{n+1} \) defined as \(G(x) = (x, f(x)) \) (where \((x, f(x)) \) is \(x \) concatenated with \(f(x) \)) is \((S', \epsilon')\) pseudorandom, where \(\epsilon' = \epsilon \) and \(S' = S - 1 \).

Like the previous proof, this one will be by contradiction. We will assume that there is a small distinguisher for \(G \) and create a small circuit that can compute \(f \).

Proof: Assume there is a circuit that \(C, |C| \leq S' \) such that

\[
\mathbb{E}_{x \sim U_{n+1}} [C(G(x))] - \mathbb{E}[C(U_{n+1})] > \epsilon'
\]

\[
\mathbb{E}_{x \sim U_n} [C((x, f(x)))] - \mathbb{E}[C(U_{n+1})] > \epsilon'
\]

Notice that sampling \(n+1 \) random bits is the same as sampling \(n \) random bits and then sampling 1 random bit and then concatenating them. Therefore the above statement is equivalent to

\[
\mathbb{E}_{x \sim U_n} [C((x, f(x)))] - \mathbb{E}_{x \sim U_n, b \sim \{0, 1\}} [C((x, b))] > \epsilon'
\]

\[
\mathbb{P}_{x \sim U_n} [C((x, f(x))) = 1] - \frac{1}{2} \mathbb{P}_{x \sim U_n} [C((x, f(x))) = 1] - \frac{1}{2} \mathbb{P}_{x \sim U_n} [C((x, f(x))) = 1] > \epsilon'
\]

\[
\frac{1}{2} \mathbb{P}_{x \sim U_n} [C((x, f(x))) = 1] - \frac{1}{2} \mathbb{P}_{x \sim U_n} [C((x, f(x))) = 1] > \epsilon'
\]

\[
\frac{1}{2} (\mathbb{P}_{x \sim U_n} [C((x, f(x))) = 1] - \mathbb{P}_{x \sim U_n} [C((x, f(x))) = 1]) > \epsilon'
\]

\[
\mathbb{P}_{x \sim U_n} [C((x, f(x))) = 1] - \mathbb{P}_{x \sim U_n} [C((x, f(x))) = 1] > 2\epsilon'
\]

Therefore, the circuit is more likely to output 1 when \((x, f(x))\) is given as the input than when \((x, f(x))\) is given as the input. We will use this observation to design a randomized algorithm \(A \) that takes an input \(x \) and uses \(C \) to compute \(f(x) \). Then we will use \(A \) to design a circuit \(C' \) that computes \(f \).

Let us now consider the probability that \(A \) successfully computes \(f(x) \) on a random \(x \).

\[
\mathbb{P}_{x \sim U_n, b \sim \{0, 1\}} [A(x) = f(x)]
\]
Algorithm 1: A

\[
\begin{align*}
& b \sim \{0, 1\} \\
& \text{if } C((x, b)) = 1 \text{ then} \\
& \quad \text{return } b \\
& \text{end if} \\
& \text{return } \bar{b}
\end{align*}
\]

\[
\begin{align*}
& = \frac{1}{2} \mathbb{P}_{x \sim U_n}[C((x, f(x))) = 1] + \frac{1}{2} \mathbb{P}_{x \sim U_n}[C((x, f(x))) = 0] \\
& = \frac{1}{2} \mathbb{P}_{x \sim U_n}[C((x, f(x))) = 1] + \frac{1}{2} \mathbb{P}_{x \sim U_n}[C((x, f(x))) = 0] \\
& = \frac{1}{2} \mathbb{P}_{x \sim U_n}[C((x, f(x))) = 1] + \frac{1}{2} (1 - \mathbb{P}_{x \sim U_n}[C((x, f(x))) = 1]) \\
& = \frac{1}{2} + \frac{1}{2} (\mathbb{P}_{x \sim U_n}[C((x, f(x))) = 1] - \mathbb{P}_{x \sim U_n}[C((x, f(x))) = 1])
\end{align*}
\]

We already showed above that \((\mathbb{P}_{x \sim U_n}[C((x, f(x))) = 1] - \mathbb{P}_{x \sim U_n}[C((x, f(x))) = 1]) > 2 \epsilon' \). Consequently, the above expression evaluates to

\[
= \frac{1}{2} + \epsilon' = \frac{1}{2} + \epsilon
\]

Now we need to turn \(A \) into a series of circuits. Let \(A_b \) be the algorithm \(A \) so that rather than sampling the variable \(b \), it has \(b \) fixed as \(b \). Observe that since \(\mathbb{P}_{x \sim U_n, b \sim \{0, 1\}}[A(x) = f(x)] \geq \frac{1}{2} + \epsilon \), there must be a bit \(b \in \{0, 1\} \) such that the \(\mathbb{P}_{x \sim U_n}[A_b(x) = f(x)] \geq \frac{1}{2} + \epsilon \). So for each circuit in the circuit family that will compute \(f \), we will hard code \(b \) so that it is the bit with the aforementioned property.

So, the circuit \(C' \) will compute and output \(C((x, 1)) \) if \(b = 1 \) and \(C((x, 0)) \) if \(b = 0 \). This makes \(C' \) equivalent to \(A_b \) for the best choice of \(b \).

It is easy to see that the extra computation means that the size of \(C' \) is \(|C| + 1\), and thus we contradict our hardness assumption.

4 Nisan-Wigderson PRG

Nisan-Wigderson showed a way to construct a much better PRG from hardness assumptions. We will discuss this in next class, and provide some intuition here.

We have shown that the assumption of a hard function \(f \) allows us to extend \(n \) bits to \(n + 1 \) bits. The Nisan-Wigderson PRG goes further and gives us exponential stretch.

On a high level, the PRG \(G \) samples \(r = \text{poly}(n) \) bits and generates bits \(z_1, z_2, \ldots, z_m \) where \(m = 2^{\Omega(n)} \).

To do so, we fix a set system \(S_1, S_2, \ldots, S_m \subseteq [r], |S_i| = n \), and set \(z_i \) to be \(f(x_{S_i}) \).

For the construction, we will see that an additional ‘design property’ is needed on the set system that bounds the pairwise intersection of any two sets:

\[
\forall i \neq j, |S_i \cap S_j| \leq \frac{n}{c}
\]

where \(c \) is some constant.

We will discuss this in much more detail in the next class.