3.1 k-Wise Independence

Definition 3.1 (k-wise independence) X_1, \ldots, X_n is k-wise independent if $\forall T \subseteq [n], |T| = k, \{X_j\}_{j \in T}$ are independent random variables.

Lemma 3.2 Let $\{X_1, \ldots, X_n\}$ be k-wise independent random variables in the range $[0,1]$. Assume k is even. Let $X = \sum_{i=1}^{n} X_i$, $\mu = \mathbb{E}[X]$. Then $\forall t > 0$, $\Pr[|X - \mu| > t] \leq (O(\sqrt{\frac{2n}{k}}))^k$.

Proof:

With Markov inequality, we have $\Pr[(X - \mu)^k > t^k] \leq \mathbb{E}[(X - \mu)^k]$. Moreover, $\mathbb{E}[(X - \mu)^k] = \mathbb{E}[(\sum_{i=1}^{n} (X_i - \mu_i))^k]$ where $\mu_i = \mathbb{E}[X_i]$, as X_i’s are k-wise independent. Let $Y_i = X_i - \mu_i$. We have $\mathbb{E}[Y_i] = 0$. Then the expectation can be written as $\mathbb{E}[(Y_1 + Y_2 + \ldots + Y_n)^k]$. Expand it, we have

$$\mathbb{E}(X - \mu)^k = \sum_{j_1, \ldots, j_k \in [n]} \mathbb{E}\left[\prod_{i=1}^{k} Y_{j_i}\right]$$

where there might be duplicated j_i. If we assume that X_i is binary (or chosen within $[0,1]$), each item in the above sum is less than or equal to 1.

Now we show that some of the items $\mathbb{E}\left[\prod_{i=1}^{k} Y_{j_i}\right]$ are zero. Combine all of the duplicated j_i’s together and rewrite the expectation as $\mathbb{E}\left[Y_{j_{k_1}}^{k_1} \cdot \ldots \cdot Y_{j_{k_l}}^{k_l}\right]$ where each j_i are distinct and the sum of k_1, \ldots, k_l is k. Now we show that if $l > k/2$,

$$\mathbb{E}\left[Y_{j_{k_1}}^{k_1} \cdot \ldots \cdot Y_{j_{k_l}}^{k_l}\right] = \mathbb{E}[Y_{j_1}^{k_1}] \cdot \mathbb{E}[Y_{j_2}^{k_2}] \cdot \ldots \cdot \mathbb{E}[Y_{j_l}^{k_l}]$$

(Y_i’s are k-wise independent) (3.1)

if $l > k/2$, $= 0$ (\exists i \in [l] \text{ s.t. } k_i = 1 \text{ and } \mathbb{E}[Y_i] = 0 \forall i \in [n])$

Thus we need only consider the items with $l \leq k/2$. The number of items with $l \leq k/2$ is upper bounded by \(\binom{n}{k/2} \cdot k^{k/2}\), which can be considered as the number of choices, choosing $n/2$ different j_i’s from $[n]$, and then choosing k_i to be either 0 or 2, \ldots, k for all $i \in \{1, \ldots, \frac{k}{2}\}$. As each item is less than or equal to 1, we have

$$\mathbb{E}(X - \mu)^k \leq \binom{n}{k/2} \cdot k^{k/2} \cdot 1 \leq \left(\frac{2ne}{k}\right)^{k/2} \cdot k^{k/2} = (2ne)^{k/2} = \sqrt{2ne^k}$$

\(\blacksquare\)
Lemma 3.3 (Construction of \(k \)-wise independent random variables) For any prime \(p \) and \(k > 0 \), there is a construction of \(k \)-wise independent random variables \(X_1, \ldots, X_p \) using \(k \lceil \log p \rceil \) bits of randomness.

Proof: Fix a finite field \(\mathbb{F}_p \) where \(p \) is a prime. Sample a uniform vector \(\vec{\alpha} = \{\alpha_0, \alpha_1, \ldots, \alpha_{k-1}\} \in \mathbb{F}_p^k \). Let \(h_{\vec{\alpha}}(y) := \sum_{i=0}^{k-1} \alpha_i \cdot y^i \). We can construct a set of \(p \) random variables \(\{X_i = h_{\vec{\alpha}}(i)\}_{i=0}^{p-1} \).

First we observe that \(X_i \) for all \(i \in \{0, \ldots, p-1\} \) is uniform over \(\mathbb{F}_p \). Now we prove that the random variables \(\{X_i\} \) are \(k \)-wise independent. In other words, we need to prove the following claim:

Claim 3.4 For any \(T \subseteq \{0, \ldots, p-1\} \), \(|T| = k \), denote \(T = \{i_0, \ldots, i_{k-1}\} \), for any \(\vec{\beta} = (\beta_0, \ldots, \beta_{k-1}) \),

\[\Pr[X_{i_j} = \beta_j \forall j \in \{0, \ldots, k-1\}] = \frac{1}{p^k} \]

Proof: We can write the event in the following way,

\[\Pr[X_{i_j} = \beta_j \forall j \in \{0, \ldots, k-1\}] = \Pr \left[\begin{pmatrix} 1 & i_0^1 & i_0^2 & \cdots & i_0^{k-1} \\ 1 & i_1^1 & i_1^2 & \cdots & i_1^{k-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & i_{k-1}^1 & i_{k-1}^2 & \cdots & i_{k-1}^{k-1} \end{pmatrix} \vec{\alpha} = \vec{\beta} \right] \]

The matrix (denoted with \(M \)) in the equation above is a Vandermonde’s matrix, the determinant of which is non-zero. Thus \(M \vec{\alpha} = \vec{\beta} \) has single solution.

As the sampling of vector \(\vec{\alpha} \) uses \(k \cdot \lceil \log p \rceil \) random bits, the lemma is proven.

Error Reduction Comparison Assume that some algorithm \(\mathcal{A} \) uses \(R \) bits of randomness with running time \(T \) has success probability \(\frac{2}{3} \). The table shows running time overhead and number of random bits needed with different kinds of random variables to amplify the success probability of \(\mathcal{A} \) to \(1 - \epsilon \),

<table>
<thead>
<tr>
<th>Random variables</th>
<th>Running Time</th>
<th>Random bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent r.v.s</td>
<td>(O(T \cdot \log(\frac{1}{\epsilon})))</td>
<td>(O(R \cdot \log(\frac{1}{\epsilon})))</td>
</tr>
<tr>
<td>2-wise independent r.v.s</td>
<td>(O(T \cdot \frac{1}{\epsilon}))</td>
<td>(2R + 2 \log(\frac{1}{\epsilon}) + O(1))</td>
</tr>
<tr>
<td>(k)-wise independent r.v.s</td>
<td>(O((\frac{1}{\epsilon})^\frac{k}{2} \cdot T))</td>
<td>(kR + 2 \cdot \log(\frac{1}{\epsilon}) + O(k))</td>
</tr>
</tbody>
</table>

3.2 Probabilistic Method

This is a general technique to show the existence of objects using probabilistic arguments. As an example, we prove the existence of Ramsey graphs using this technique.

Definition 3.5 (\(k \)-Ramsey Graphs) \(G = (V, E) \) is a \(k \)-Ramsey Graph if it is an undirected graph on \(n \) vertices (i.e., \(|V| = n \)) and the largest independent set and the largest clique in \(G \) are of size not larger than \(k \).
Claim 3.6 (Erdős 1947) There exists \((2 \log n + O(1))\)-Ramsey graphs on \(n\) vertices.

Proof: Pick a random graph \(G(n, \frac{1}{2})\), i.e., there are \(n\) vertices and each edge is presented with probability \(\frac{1}{2}\). Let \(k\) be a parameter which will be determined later. Let \(T \subseteq [n]\) be any set of indices such that \(|T| = k\). Then we have

\[
\Pr[G_T \text{ is a clique or an independent set}] \leq 2 \cdot 2^{-\left(\begin{array}{c}k \\ 2 \end{array}\right)}
\]

where \(G_T\) denotes the induced subgraph in \(G\) by \(T\). For succinctness, we denote the event “\(G_T\) is a clique or an independent set” with \(E_T\). Then

\[
\Pr[G \text{ is not } k - \text{Ramsey}] \leq \Pr\left[\bigcup_{T \subseteq [n], |T| = k} E_T\right]
\]

(union bound)

\[
\leq \sum_{T \subseteq [n], |T| = k} \Pr[E_T] \leq \left(\frac{n}{k}\right) \cdot 2 \cdot 2^{-\left(\begin{array}{c}k \\ 2 \end{array}\right)}
\]

(3.2)

Pick \(k = 2 \log n + O(1)\) such that

\[
\left(\frac{ne}{k}\right)^k \cdot 2^{-\frac{k(k-1)}{2}} \cdot 2 < 1
\]

which means there must exist some graph \(G\) that is \(k\)-Ramsey.

\(\blacksquare\)