
CS 6815: Lecture 4

Instructor: Eshan Chattopadhyay Scribe: Makis Arsenis and Ayush Sekhari

September 4, 2018

In this lecture, we will first see an algorithm to construct ε-biased spaces. Then we will take a
detour to define characters for finite Abelian groups, and, using them define Fourier transformation
for functions over Fnp . We will later give an introduction on how having small fourier coefficeints is
related to ε−biasedness, which will be continued over to the next lecture.

1 Construction of ε-biased spaces (continued from the last lecture)

We present an algorithm to construct n random variables in F2 which are ε-biased.

Procedure:
Let r =

⌈
log2

(
n
ε

)⌉
, q = 2r ≥ n

ε .

(i) Pick random y, z ∈ Fq.

(ii) For i ∈ {0, . . . , n− 1} set Xi = 〈yi, z〉 ∈ F2.
1

Randomness used: 2
⌈
log
(
n
ε

)⌉
.

Claim 1.1. Consider n random variables X = {X0, . . . , Xn−1} constructed using the procedure
above. Then X is an ε-biased space.

Proof. For a random variable Z taking values in {0, 1}, let us define the function Bias(Z) as the
bias of the random variable Z, i.e.,

Bias(Z) = |Pr[Z = 1]− Pr[Z = 0]|

Additionally, for any set S = {s1, . . . , st} ⊆ [0, n− 1], S 6= ∅, define:⊕
XS = Xs1 ⊕ . . .⊕Xst

Recalling that a set X = {X0, . . . , Xn−1} is said to be ε-biased, if for all sets S ⊆ [n],

Bias
(⊕

XS

)
≤ ε

We need to show that the set X = {X0, . . . , Xn−1} constructed using the procedure above forms
an ε-biased space. Consider a set S = {s1, . . . , st} ⊆ [0, n− 1], S 6= ∅

1The notation 〈a, b〉 for a, b ∈ Fq means inner product with a, b viewed as vectors of the space Fr
2, i.e. 〈a, b〉 =∑r

i=1 aibi (mod 2) where ai, bi are the i-th bits of a and, b respectively.
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⊕
XS = Xs1 ⊕ . . .⊕Xst = 〈ys1 , z〉+ . . .+ 〈yst , z〉 = 〈ys1 + . . .+ yst , z〉2

Let P (y) be be the univariate polynomial over Fq defined by P (y) =
∑t

i=1 y
si . We can now rewrite

the above as: ⊕
XS = 〈P (y), z〉

Notice the following facts:

(i) If y is sampled from a distribution Y for which we are guaranteed that P (y) 6= 0 then:

Pr
y∼Y,z∈F r

2

[〈P (y), z〉 = 0] =
1

2

(ii) Otherwise,

0 ≤ Pr
y∼Fq

[P (y) = 0] ≤ deg(P )

q
≤ n− 1

q
< ε (1)

The above follows using the Schwartz-Zippel lemma and the fact that P is a univariate
polynomial over Fq of degree at most n− 1.

Thus, we have:

Pr
[⊕

XS = 0
]

= Pr[〈P (y), z〉 = 0|P (y) 6= 0] · Pr[P (y) 6= 0] + 1 · Pr[P (y) = 0]

=
1

2
(1− Pr[P (y) = 0]) + Pr[P (y) = 0]

=
1

2
+

1

2
Pr[P (y) = 0]

Using (1) with the above expression, we get:

1

2
≤ Pr

[⊕
XS = 0

]
≤ 1

2
+
ε

2

and consequently,
1

2
− ε

2
≤ Pr

[⊕
XS = 1

]
≤ 1

2

And thus,

Bias(
⊕

XS) =
∣∣∣Pr
[⊕

XS = 1
]
− Pr

[⊕
XS = 0

]∣∣∣
≤ ε

We now take a detour and discuss Fourier Analysis on Finite Abelian groups which will be useful
in constructing ε-biased spaces.

2Notice that in the last equality, the symbol + on the left-hand side denotes addition over F2 whereas in the
right-hand side denotes addition over Fq.
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2 Fourier Analysis on Finite Abelian Groups

Suggested Reading: Chapter 1 of the book “Analysis of Boolean Functions” by Ryan O’ Donnel.

2.1 Characters of Finite Abelian Groups

Definition 2.1 (Group Homomorphism). A group homomorphism χ : G1 → G2 is a map between
two groups (G1, ·) and (G2, ◦) such that the group operation is preserved, i.e. ∀x, y ∈ G1,

χ(x · y) = χ(x) ◦ χ(y)

A consequence of the above definition is that: χ(1) = 1 and χ(g−1) = (χ(g))−1 for all g ∈ G1.

Example 2.2. Let (G1, ·) = (Z,+), (G2, ◦) = (Zm,+). Then χ(a) = (a mod m) is a group
homomorphism from Z to Zm.

From now on, we will be restricting ourselves to Finite Abelian Groups, and denote them by G.
Aditionally, we will define S to be the set of unit norm complex numbers, i.e. S := {x ∈ C : ‖x‖ =
1} where C denotes complex numbers. We are ready to define characters of a group:

Definition 2.3. (Character) A character of G is a homomorphism χ : G→ S.

Definition 2.4. (Trivial Character) A character χ : G → S is called “trivial” if χ(g) = 1, for all
g ∈ G.

The following gives examples of characters for G = (Zm,+).

Claim 2.5. Let G = (Zm,+) be a finite Abelian group. Also, let ω denote the mth primitive root
of unity (over C), i.e., ω = e2πi/m where i2 = −1. Then, the mapping χj : G 7→ S defined by
χj(x) := ωjx for all j ∈ [m], is a group homomorphism from G to S.

Proof. Let x, y ∈ G. Then:

χj(x+ y) = ωj(x+y) = ωjx · ωjy = χj(x) · χj(y)3

Thus, Xj is a group homomorphism.

We will now show that χj distinct for j ∈ [m] and exhaustive.

Claim 2.6. G = (Zm,+) has exactly m characters. Additionally, the set χ = {χj | j ∈ [m]} of
characters as defined above has cardinality m, i.e., |χ| = m, and includes all the characters of G.

Proof. Let us consider χ̃ to be a character of G. Then the mapping χ̃ : G 7→ S is completely
characterized by setting the value of χ̃(1), as:

∀a ∈ [m], χ̃(a) = χ̃(1 + 1 + . . .+ 1︸ ︷︷ ︸
a

) = (χ̃(1))a

Thus, the number of characters is equal to the number of ways to set χ̃(1). And, there are only m
possible values to set χ(1) as χ(m) = (χ(1))m = 1 implies χ(1) is an mth root of unity.
Additionally, the set χ contains all of the characters χ̃ characterized by setting χ̃ to ωj for some
j ∈ [m]. All of them are distinct and |χ| = m. Thus, χ is the complete set of characters of Zm.

3Note that (·) in the RHS is on S.
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Before proceeding, we also recall the fundamental theorem of finite Abelian groups which allows us
to define characters for product groups,

Theorem 2.7 (Fundamendal Theorem of finite Abelian groups). A finite Abelian group is isomor-
phic to a direct product of cyclic groups of prime-power order, where the decomposition is unique
up to the order in which the factors are written.

The fundamental theorem allows one to look at Zn as Zq1×Zq1×. . .Zqr , where q1, . . . , qr are powers
of prime numbers and

∏r
i=1 qi = n.

Claim 2.8. Consider a finite Abelian group G = G1 × G2. If χ1 : G1 7→ S is a character for G1

and χ2 : G2 7→ S is a character for G2 then χ : G → C defined as χ(g) = χ1(g1) · χ2(g2), where
g ≡ (g1, g2), is a character for the direct product G = G1 ×G2. 4

We also define some more properties of characters-

Definition 2.9. Let f, g : G→ C be characters of the finite Abelian group G 5 ,

(i) Inner Product:
〈f, g〉 = E

x∼G
[f(x) · g(x)]

where z is defined as the complex conjugate of z ∈ C.

(ii) lp norm:

‖f‖lp =

(∑
x∈G
|f(x)|p

)1/p

where |z| is defined as the absolute value of z ∈ C.

(iii) Lp norm:

‖f‖Lp =

(
E
x∼G

[|f(x)|p]
)1/p

Claim 2.10. Let χ1, χ2 be two distinct characters of Zm. Then,

(i) 〈χ1, χ2〉 = 0

(ii) 〈χ1, χ1〉 = 1

where 〈χ1, χ2〉 is defined as in definition 2.9.

Proof. Without the loss of generality, let us assume that χ1(x) = ωjx and χ2(x) = ωkx, for some
j, k < m, then,

〈χ1, χ2〉 = Ex∈Zm [ωjxω−kx] = Ex∈Zm [ω(j−k)x] (2)

(i) If i 6= k then:

〈χ1, χ2〉 = (2) =
1

m

m∑
x=1

ω(j−k)x

=
1

m

m∑
α=1

ωα (since Zm is a cyclic group)

= 0
4The operation (·) in the RHS is defined over S
5 These definitions are more genereral and do not need f, g to be characters
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(ii) If i = k then:

〈χ1, χ2〉 = (2) =
1

m

m∑
j=1

ω0

=
1

m

m∑
j=1

1

= 1

Additive character of Fnp (where p is a prime)
Consider the group (Fnp ,+) where + means vector addition over Fnp , and let χ be a non-trivial
character of Fp.

Claim 2.11. For v ∈ Fnp , define χv : Fnp → S as χv(y) = χ(〈v, y〉) 6. Then, for all v ∈ Fnp , χv is a
character of (Fnp ,+).

Proof. Let x, y ∈ Fnp :

χv(x+ y) = χ(〈v, x+ y〉) = χ(〈v, x〉+ 〈v, y〉) = χ(〈v, x〉) · χ(〈v, y〉) = χv(x) · χv(y)

Thus, for all v ∈ Fnp , χv is a character of (Fnp ,+).

Claim 2.12. Consider the set X = {χv | v ∈ Fnp} of the characters of (Fnp ,+) as defined above.
Then X is a set of orthonormal functions.,

Proof. We will show this in two parts as follows:

1. For v1 6= v2 ∈ Fnp , χv1 and χv2 are orthogonal, i.e., 〈χv1 , χv2〉 = 0.

By definition, χv(x) = χ(〈x, v〉) and without loss of generality, let us assume that χ(z) = ωz

for all z ∈ Fp, where ω is a pth root of unity. Thus,

χv1(x) = χ(〈v1, x〉) = ω〈v1,x〉, and,

χv2(x) = χ(〈v2, x〉) = ω〈v2,x〉

Thus,

〈χv1 , χv2〉 = Ex∈Fn
p
[χv1(x) · χv2(x)]

= Ex∈Fn
p
[ω〈−v1,x〉 · ω〈v2,x〉]

= Ex∈Fn
p
[ω〈v2−v1,x〉]

= 0

where the last equality follows from the fact that the sum of all pth roots of unity is 0, i.e.,∑p
i=1 ω

i = 0.

6〈x, y〉 =
∑n

i=1 xi · yi for vectors x, y ∈ Fn
p .
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2. For any v ∈ Fnp , 〈χv, χv〉 = 1.

Similar to the part-1, without loss of generality,

χv(x) = χ(〈v, x〉) = ω〈v,x〉, and,

Thus,

〈χv, χv〉 = Ex∈Fn
p
[χv(x) · χv(x)]

= Ex∈Fn
p
[ω〈v,x〉 · ω−〈v,x〉]

= Ex∈Fn
p
[ω〈v−v,x〉]

= Ex∈Fn
p
[ω0]

= 1

Thus, the set X = {χv | v ∈ Fnp} is orthonormal and has cardinality pn, and correspondingly, forms
an orthonormal basis to represent functions mapping Fnp 7→ Fp, as formalized in the following:

Claim 2.13. Let V be the vector space of functions f : Fnp → C. Then the set X = {χv | v ∈ Fnp}
forms an orthonormal basis for V.

In the next section, we will see exact decomposition of the given function in terms of its “Fourier
components”.

2.2 Fourier Analysis over Fnp

Theorem 2.14. Given a function f : Fnp → C. Define f̂ : Fnp → C as follows:

f̂(v) = Es∼Fn
p
[f(x) · χv(x)] = 〈f, χv〉

Then, the function f can be written in an alternate form using f̂ as follows:

f(x) =
∑
v∈Fn

p

f̂(v) · χv(x)

Proof. Using the claim 2.13, {χv}v∈Fp
n

is an orthonormal basis of V. Thus, f can be expressed as:

f(x) =
∑
v∈Fn

p

Cv · χv(x)

for some constants Cv, which can be calculated as follows:

〈f, χv〉 = Ex∼Fn
p
[f(x) · χv(x)]

=
1

pn

∑
x∈Fn

p

∑
u∈Fn

p

Cu · χu(x)

 · χv(x)

=
1

pn

∑
x∈Fn

p

Cv = Cv

6



where the last equality follows from the fact that 〈χu, χv〉 = 0 for u 6= v and is 1 otherwise. Thus,

f(x) =
∑
v∈Fn

p

f̂(v) · χv(x)

Note that the set X is fixed and known in advance. Thus, as shown above, f can be alternately
represented using f̂ or the vector (f̂(v) | v ∈ Fnp ). This is called as the Fourier transform on the

basis X , and the constant f̂(v) is called as the Fourier coefficient for basis χv .

As we will see thoughout the course, looking at functions under the lens of “Fourier transformation”,
provides many computational benefits and simplicity. In the following theorem, we provide an
identity to compute inner product of functions in terms using their “Fourier coefficients”. The
following theorem relates expectations in function space to dot product in the Fourier space.

Theorem 2.15 (Parseval’s Theorem). Let function f, g : Fnp → C. Then:

Ex∼Fn
p
[f(x) · g(x)] =

∑
v∈Fn

p

f̂(v) · ĝ(v)

Proof.

Ex∼Fn
p
[f(x) · g(x)] = 〈f, g〉

=

〈∑
v

f̂(v) · χv,
∑
w

ĝ(w) · χv

〉
=
∑
v,w

〈f̂(v)χv, ĝ(w)χw〉

=
∑
v,w

f̂(v) · ĝ(w)〈χv, χw〉

=
∑
v

f̂(v) · ĝ(v)

Corollary 2.16. For a given function f : Fnp 7→ C,

‖f‖L2 = ‖f̂‖l2

3 ε-biased definition under the lens of Fourier Analysis

In this section, we will see how to construct ε− biased distributions using Fourier coefficients.

Claim 3.1. Let D : Fnp → R be a distribution on Fnp . D is an ε-biased distribution on Fnp if:

∀v ∈ Fnp , v 6= ~0 : |D̂(v)| ≤ ε

pn

where D̂(v) = 1
pn Ex∈D[χv(x)].

continue in the next lecture...
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