1 Basic Concepts

Given a polynomial-time computable relation R, let L_R be the language defined by

$$L_R := \{ x \mid \exists y, (x, y) \in R \}. $$

Then it holds that $L_R \in \text{NP}$. Next we consider a ‘harder’ problem: compute number of y’s satisfying $(x, y) \in R$.

Definition 1. Define the function $f_R(x) : \{0, 1\}^* \rightarrow \mathbb{N}$ as $f_R(x) = |\{y \mid (x, y) \in R\}|$. Let

$$\#R := \{(x, k) \mid f_R(x) \geq k\}.$$

Proposition 1. For all polynomial-time computable R, deciding $\#R$ and computing f_R are Turing-reducible to one another.

Proof. The reduction from $f_R(x)$ to $\#R$ is obvious. Conversely, if we have the access to an oracle deciding whether $(x, k) \in \#R$, then $f_R(x)$ can be computed by performing a binary search on the value of k, costing $\text{poly}(x)$ time. $lacksquare$

Definition 2. $\#P$ is defined by the class of languages L such that $L = \#R$ for some polynomial-time computable relation R. L is $\#P$-complete if $L \in \#P$ and $R \leq_p L$ for all $R \in \#P$.

For every NP language decided by NTM M, there is a ‘generalized’ problem in $\#P$ which computes the number of certificates that make M accepting a given input x. Therefore,

Fact. $\text{NP} \leq \#P \subseteq \text{PSPACE}$.

Definition 3. We say f is a parsimonious reduction from $\#Q$ to $\#R$, if it is polynomial-time computable and for all x, $f_Q(x) = f_R(f(x))$.

Notation 1. If $\#R$ is parsimoniously reducible from Q, we write $\#Q \leq_{\text{par}} \#R$.

If f is a parsimonious reduction from $\#Q$ to $\#R$, then $L_Q \leq L_R$, since $x \in L_Q$ iff $f(x) \in L_R$. Conversely, if $\#Q \leq_{\text{par}} \#R$, then $(x, k) \in \#Q \iff (f(x), k) \in \#R$.

Theorem 1. $\#\text{SAT}$ is $\#P$-complete.
Conjecture. \(\#L \) is \(\#P \)-complete implies that \(L \) is \(\mathsf{NP} \)-complete.

Unfortunately, this conjecture is FALSE:

Theorem 2. There exists a polynomial-time computable relation \(R \) such that \(\#R \) is \(\#P \)-complete but \(L_R \in P \).

Proof. Define \(R \) as follows:

\[
(x, y') \in R \iff y' = 0 \lor (y' = 1y \land (x, y) \in R_{SAT}),
\]

where \((x, y) \in R_{SAT}\) iff the boolean formula \(\phi \) described by \(x \) is satisfied by assigning the values described by \(y \) to the variables in \(\phi \).

It is obvious that \(L_R \in P \) since \((x, 0) \in R\) for all \(x \in \{0, 1\}^* \), namely \(L_R = \{0, 1\}^* \). On the other hand, \(\#SAT \leq_{par} \#R \), since \((x, k) \in \#SAT \iff (x, k + 1) \in \#R \). Therefore \(\#R \) is \(\#P \)-complete.

Definition 4. Given an \(n \times n \) matrix \(A \), its permanent is defined by

\[
\text{perm}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} A_{i, \sigma(i)}.
\]

Theorem 3 (Valiant). Computing permanent of 0-1 matrices is \(\#P \)-complete.

As shown in Figure 1, given an \(n \times n \) 0-1 matrix \(A \), a bipartite graph \(G(X,Y,E) \) can be built as follows: \(X = \{x_1, x_2, \ldots, x_n\} \), \(Y = \{y_1, y_2, \ldots, y_n\} \), \((x_i, y_j) \in E \iff A_{i,j} = 1\).

![Figure 1: Constructing bipartite graph for 0-1 matrix A](image)

Then it is easy to verify that the permanent of \(A \) equals the number of perfect matchings in \(G \). Therefore, counting the number of perfecting matchings in a bipartite graph is also \(\#P \)-complete.
2 Approximate Counting

Theorem 4. Given any polynomial p, there exists a PPT A such that

$$\Pr \left[\#\text{SAT}(\phi) \cdot \left(1 - \frac{1}{p(n)} \right) \leq A^{\text{NP}}(\phi) \leq \#\text{SAT}(\phi) \cdot \left(1 + \frac{1}{p(n)} \right) \right] \geq 1 - 2^{-n}. $$

Basic idea. For all ϕ, if we can find a rough approximation $A'(\phi)$ such that

$$\#\text{SAT}(\phi) \cdot 2^{-i} \leq A'(\phi) \leq \#\text{SAT}(\phi) \cdot 2^i$$

for some constant i, then we are able to obtain a tighter approximation by:

1. construct ϕ' from ϕ such that $\#\text{SAT}(\phi') = \#\text{SAT}(\phi)k$ for some k;
2. output $A'(\phi')^{1/k}$.

Since

$$\#\text{SAT}(\phi)^k \cdot 2^{-i} = \#\text{SAT}(\phi') \cdot 2^{-i} \leq A'(\phi') \leq \#\text{SAT}(\phi') \cdot 2^i = \#\text{SAT}(\phi)^k \cdot 2^i,$$

it holds that

$$\#\text{SAT}(\phi) \cdot 2^{-i/k} \leq A'(\phi')^{1/k} \leq \#\text{SAT}(\phi) \cdot 2^{i/k}.$$

For step (1), ϕ' can be constructed by

$$\phi' = \bigwedge_{i=1}^{k} \phi(\bar{x}_i),$$

where $\phi(\bar{x}_i)$ is a copy of ϕ with the variables renamed to \bar{x}_i.

Consider GAP-SAT:

$$\Pi_Y = \{ (\phi, k) \mid \#\text{SAT}(\phi) \geq 8k \};$$
$$\Pi_N = \{ (\phi, k) \mid \#\text{SAT}(\phi) \leq k/8 \}. $$

Claim. There exists a polynomial-time TM A such that A^{O} approximates $\#\text{SAT}$ within factor $8^{1.5}$ where O is an oracle that solves GAP-SAT.

Proof. Let $A(\phi)$ work as follows:

1. $i \leftarrow 0$
2. while $O(\phi, 8^i) = 1$ do
3. $i \leftarrow i + 1$
4. end while
5. return $8^{i - \frac{1}{2}}$
After exiting the while loop, it holds that $O(\phi, 8^i) \neq 1$ and $O(\phi, 8^{i-1}) = 1$, which implies that $8^{i-2} < \#SAT(\phi) < 8^{i+1}$. Thus

$$8^{-1.5} < \frac{\#SAT(\phi)}{8^{i-\frac{1}{2}}} < 8^{1.5}.$$

Next lecture we will show how to solve GAP-SAT (with the power of randomness).