Notation

Algorithm

Let \mathcal{A} denote an algorithm. We write $\mathcal{A}(.)$ to denote an algorithm with one input and $\mathcal{A}(.,.)$ for two inputs. In general, the output of an algorithm can be considered as a probability distribution. So $\mathcal{A}(x)$ denotes a probability distribution. The algorithm is deterministic if the probability is concentrated on a single element.

Experiment

To sample an element x from a distribution S we denote the experiment by $x \leftarrow S$. If F is a finite set, then $x \leftarrow F$ is the experiment of sampling uniformly from the set F. To denote the ordered sequence in which the experiments happen we use semicolon.

$$(x \leftarrow S; (y, z) \leftarrow \mathcal{A}(x))$$

Using this notation we can describe probability of events. If $p(.,.)$ denotes a predicate, then

$$Pr[x \leftarrow S; (y, z) \leftarrow \mathcal{A}(x) : p(y,z)]$$

is the probability that the predicate $p(y,z)$ is true after the ordered sequence of events $(x \leftarrow S; (y, z) \leftarrow \mathcal{A}(x))$. The notation $\{x \leftarrow S; (y, z) \leftarrow \mathcal{A}(x) : (y, z)\}$ denotes the probability distribution $\{y, z\}$ generated by the ordered sequence of experiments $(x \leftarrow S; (y, z) \leftarrow \mathcal{A}(x))$.

Probability

Basic Facts

- Events A and B are said to be independent if

$$Pr[A \cap B] = Pr[A] \cdot Pr[B]$$
• Events A_1, A_2, \ldots, A_n are said to be pair \textit{wise independent} if for every i and every $j \neq i$, A_i and A_j are independent.

• \textit{Union Bound:} Let A_1, A_2, \ldots, A_n be events. Then,
 \[\Pr[A_1 \cup A_2 \cup \ldots \cup A_n] \leq \Pr[A_1] + \Pr[A_2] + \ldots + \Pr[A_n] \]

• Let X be a random variable with range Ω. The \textit{expectation} of X is a number defined as follows.
 \[E[X] = \sum_{x \in \Omega} x \Pr[X = x] \]

 The \textit{variance} is given by,
 \[\text{Var}[X] = E[X^2] - (E[X])^2 \]

• Let X_1, X_2, \ldots, X_n be random variables. Then,
 \[E[X_1 + X_2 + \cdots + X_n] = E[X_1] + E[X_2] + \cdots + E[X_n] \]

• If X and Y are \textit{independent random variables}, then
 \begin{align*}
 E[XY] &= E[X] \cdot E[Y] \\
 \text{Var}[X + Y] &= \text{Var}[X] + \text{Var}[Y]
 \end{align*}

\textbf{Markov’s Inequality}

If X is a positive random variable with expectation $E(X)$ and $a > 0$, then
\[\Pr[X \geq a] \leq \frac{E(X)}{a} \]

\textbf{Chebyshev’s Inequality}

Let X be a random variable with expectation $E(X)$ and variance σ^2, then for any $k > 0$,
\[\Pr[|X - E(X)| \geq k] \leq \frac{\sigma^2}{k^2} \]

\textbf{Chernoff’s inequality}

Let X_1, X_2, \ldots, X_n denote independent random variables, such that for all i, $E(X_i) = \mu$ and $|X_i| \leq 1$.
\[\Pr \left[\left| \frac{\sum X_i}{n} - \mu \right| \geq \epsilon \right] \leq 2^{-\epsilon^2n} \]