Problem 1 Expectation and Variance

Let X and Y be two independent random variables. Prove the following facts.

(a) $E[XY] = E[X]E[Y]$

(b) $\text{Var}[X+Y] = \text{Var}[X] + \text{Var}[Y]$.

Give examples when X and Y are not independent and equalities (a) and (b) do not hold.

Problem 2 Pairwise independence

1. Let r_1, r_2, \ldots, r_k be n-bit strings picked uniformly at random. For any subset S of $\{1, 2, \ldots, k\}$, define a random variable $z_S = \bigoplus_{i \in S} r_i$. Prove that the set of random variables $\{z_S | S \subset \{1, 2, \ldots, k\}\}$ are pairwise independent.

2. Let X_1, X_2, \ldots, X_n be random variables that are pairwise independent. Further, for all i, let $E[X_i] = \mu$ and $\text{Var}[X_i] = \sigma^2$

(a) Show that,

$$\Pr \left[\left| \frac{\sum X_i}{n} - \mu \right| \geq \epsilon \right] \leq \frac{\sigma^2}{n\epsilon^2}$$

Note that this is a Chernoff like bound when the random variables are only pairwise independent. (Hint: Use Chebyshev’s inequality)

(b) Suppose, further that the random variables assume the values only 1 and -1. Show that the inequality can be simplified to,

$$\Pr \left[\left| \frac{\sum X_i}{n} - \mu \right| \geq \epsilon \right] \leq \frac{1 - \mu^2}{n\epsilon^2}$$

Problem 3 Biased Samples

Let D be a distribution such that $\Pr[D = b] \geq \frac{1}{2} + \epsilon$ for some constant $\epsilon > 0$.

1. Show that using k independent samples from D, b can be computed correctly with high probability.
2. Assuming only \(k \) pairwise independent samples from \(D \), calculate the probability \(b \)
 can be computed correctly?

Problem 4 Taking Complements

If \(\text{NP} \subseteq \text{coNP} \), then show that \(\text{NP} = \text{coNP} \)

Problem 5 Diagonalization

Prove that \(\text{NTIME}(n^5) \not\subseteq \text{NTIME}(n^2) \)

Problem 6 NP-completeness

1. Show that SAT\(^1\) is NP-complete, even if each variable is restricted to occur exactly 3
 times. What if it is restricted to occur only 2 times?

2. Consider a system of quadratic equations \(\mod 2 \) in \(n \) variables, i.e. all variables are
 boolean and every equation has degree at most 2 (eg. \(x_1 x_2 + x_3 = 1 \)). Prove that
 solving such a system is NP-complete. (Hint: Try starting with a 3-SAT formula).

\(^1\)By SAT we mean a general formula in CNF.