The Kernel Trick, Gram Matrices, and Feature Extraction

CS6787 Lecture 4 — Spring 2024

Today: A "Classic" Example of a Tradeoff

A pre-deep-learning-revolution concept

Q: How do to kernel learning?

- Many ways to set up the computation
 - are mathematically equivalent,
 - but not computationally equivalent
 - or numerically equivalent

Basic Linear Models

For two-class classification using model vector w

output =
$$sign(w^T x)$$

 What is the compute cost of making a prediction in a d-dimensional linear model, given an example x?

- Answer: d multiplies and d adds
 - To do the dot product.

Optimizing Basic Linear Models

For classification using model vector w

$$output = sign(w^T x)$$

• Optimization methods for this task vary; here's logistic regression ${\bf 1}$

minimize_w
$$\frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp(-w^T x_i y_i)\right)$$

$$(y_i \in \{-1, 1\})$$

SGD on Logistic Regression

Gradient of a training example is

$$\nabla f_i(w) = \frac{-x_i y_i}{1 + \exp(w^T x_i y_i)}$$

So SGD update step is

$$w_{t+1} = w_t + \alpha_t \frac{x_i y_i}{1 + \exp(w_t^T x_i y_i)}$$

What is the compute cost of an SGD update?

• For logistic regression on a **d**-dimensional model

$$w_{t+1} = w_t + \alpha_t \frac{x_i y_i}{1 + \exp(w_t^T x_i y_i)}$$

- Answer: 2d multiples and 2d adds + O(1) extra ops
 - d multiplies and d adds to do the dot product
 - d multiplies and d adds to do the AXPY operation
 - O(1) additional ops for computing the exp, divide, etc.

Benefits of Linear Models

- Fast classification: just one dot product
- Fast training/learning: just a few basic linear algebra operations
- Drawback: limited expressivity
 - Can only capture linear classification boundaries → bad for many problems
- How do we let linear models represent a broader class of decision boundaries, while retaining the systems benefits?

Review: The Kernel Method

• Idea: in a linear model we can think about the **similarity** between two training examples **x** and **y** as being

$$x^T y$$

- This is related to the rate at which a random classifier will separate ${\bf x}$ and ${\bf y}$
- Kernel methods replace this dot-product similarity with an arbitrary Kernel function that computes the similarity between x and y

$$K(x,y): \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

Kernel Properties

- What properties do kernels need to have to be useful for learning?
- Key property: kernel must be **symmetric** K(x,y) = K(y,x)
- Key property: kernel must be positive semi-definite

$$\forall c_i \in \mathbb{R}, x_i \in \mathcal{X}, \sum_{i=1}^n \sum_{j=1}^n c_i c_j K(x_i, x_j) \ge 0$$

Can check that the dot product has this property

Facts about Positive Semidefinite Kernels

Sum of two PSD kernels is a PSD kernel

$$K(x,y) = K_1(x,y) + K_2(x,y)$$
 is a PSD kernel

Product of two PSD kernels is a PSD kernel

$$K(x,y) = K_1(x,y)K_2(x,y)$$
 is a PSD kernel

Scaling by any function on both sides is a kernel

$$K(x,y) = f(x)K_1(x,y)f(y)$$
 is a PSD kernel

Other Kernel Properties

• Useful property: kernels are often non-negative

$$K(x,y) \ge 0$$

• Useful property: kernels are often scaled such that

$$K(x,y) \le 1$$
, and $K(x,y) = 1 \Leftrightarrow x = y$

• These properties capture the idea that the kernel is expressing the similarity between ${\bf x}$ and ${\bf y}$

Common Kernels

 Gaussian kernel/RBF kernel: de-facto kernel in machine learning

$$K(x,y) = \exp\left(-\gamma ||x - y||^2\right)$$

- We can validate that this is a kernel
 - Symmetric?
 - Positive semi-definite?
 - Non-negative?
 - Scaled so that K(x,x) = 1?

Common Kernels (continued)

• Linear kernel: just the inner product $K(x,y) = x^T y$

• Polynomial kernel: $K(x,y) = (1 + x^T y)^p$

• Laplacian kernel: $K(x,y) = \exp(-\beta ||x-y||_1)$

Kernels as a feature mapping

 More generally, any function that can be written in the form

$$K(x,y) = \phi(x)^T \phi(y)$$

(where $\phi:\mathbb{R}^d o \mathbb{R}^D$ is called a feature map) is a kernel.

- Even works for maps onto infinite dimensional Hilbert space
 - And in this case the converse is also true: any kernel has an associated (possibly infinite-dimensional) feature map.

Classifying with Kernels

Recall the SGD update is

$$w_{t+1} = w_t + \alpha_t \frac{x_i y_i}{1 + \exp(w_t^T x_i y_i)}$$

- Resulting weight vectors will always be in the span of the examples.
- So, our prediction will be:

$$w = \sum_{i=1}^{n} u_i x_i \Rightarrow h_w(x) = \operatorname{sign}(w^T x) = \operatorname{sign}\left(\sum_{i=1}^{n} u_i x_i^T x\right)$$

Classifying with Kernels

 An equivalent way of writing a linear model on a training set is

$$h_w(x) = \operatorname{sign}\left(\sum_{i=1}^n u_i x_i^T x\right)$$

 We can kernel-ize this by replacing the dot products with kernel evaluations

$$h_u(x) = \operatorname{sign}\left(\sum_{i=1}^n u_i K(x_i, x)\right)$$

Learning with Kernels

 An equivalent way of writing linear-model logistic regression is

$$\operatorname{minimize}_{u} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp \left(-\left(\sum_{j=1}^{n} u_{j} x_{j} \right)^{T} x_{i} y_{i} \right) \right)$$

 We can kernel-ize this by replacing the dot products with kernel evaluations

minimize_u
$$\frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp \left(-\sum_{j=1}^{n} u_j y_i K(x_j, x_i) \right) \right)$$

The Computational Cost of Kernels

- Recall: benefit of learning with kernels is that we can express a wider class of classification functions
- Recall: another benefit is linear classifier learning problems are "easy" to solve because they are convex, and gradients easy to compute
- Major cost of learning naively with Kernels: have to evaluate K(x, y)
 - For SGD, need to do this effectively n times per update
 - Computationally intractable unless **K** is very simple

The Gram Matrix

 Address this computational problem by pre-computing the kernel function for all pairs of training examples in the dataset.

$$G_{i,j} = K(x_i, x_j)$$

• Transforms the logistic regression learning problem into

minimize_u
$$\frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp\left(-y_i e_i^T G u\right)\right)$$

This is much easier than re-computing the kernel at each iteration

Problems with the Gram Matrix

- Suppose we have n examples in our training set.
- How much memory is required to store the Gram matrix G?
- What is the cost of taking the product G_i w to compute a gradient?
- What happens if we have one hundred million training examples?

Feature Extraction

• Simple case: let's imagine that **X** is a finite set {1, 2, ..., k}

• We can define our kernel as a matrix $M \in \mathbb{R}^{k \times k}$

$$M_{i,j} = K(i,j)$$

• Since M is positive semidefinite, it has a square root

$$\sum_{i=1}^{k} U_{k,i} U_{k,j} = M_{i,j} = K(i,j)$$

$$U^{T} U = M$$

Feature Extraction (continued)

• So if we define a **feature mapping** $\phi(i) = Ue_i$ then

$$\phi(i)^T \phi(j) = \sum_{i=1}^k U_{k,i} U_{k,j} = M_{i,j} = K(i,j)$$

- The kernel is equivalent to a dot product in some space
- As we noted above, this is true for all kernels, not just finite ones
 - Just with a possibly infinite-dimensional feature map

Classifying with feature maps

- Suppose that we can find a finite-dimensional feature map that satisfies $\phi(i)^T\phi(j)=K(i,j)$
- Then we can simplify our classifier to

$$h_u(x) = \operatorname{sign}\left(\sum_{i=1}^n u_i K(x_i, x)\right)$$
$$= \operatorname{sign}\left(\sum_{i=1}^n u_i \phi(x_i)^T \phi(x)\right) = \operatorname{sign}\left(w^T \phi(x)\right)$$

Learning with feature maps

• Similarly we can simplify our learning objective to

minimize_w
$$\frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp \left(-\sum_{j=1}^{n} w^{T} \phi(x_i) y_i \right) \right)$$

- Take-away: this is just transforming the input data, then running a linear classifier in the transformed space!
- Computationally: super efficient
 - As long as we can transform and store the input data in an efficient way

Problems with feature maps

- The dimension of the transformed data may be much larger than the dimension of the original data.
- Suppose that the feature map is $\phi:\mathbb{R}^d\to\mathbb{R}^D$ and there are \mathbf{n} examples
- How much memory is needed to store the transformed features?
- What is the cost of taking the product $u^T \phi(x_i)$ to compute a gradient?

Feature maps vs. Gram matrices

Interesting systems trade-offs exist here.

 When number of examples gets very large, feature maps are better.

 When transformed feature vectors have high dimensionality, Gram matrices are better.

Another Problem with Feature Maps

 Recall: I said there was always a feature map for any kernel such that

$$\phi(i)^T \phi(j) = K(i,j)$$

- But this feature map is not always finite-dimensional
 - For example, the Gaussian/RBF kernel has an infinite-dimensional feature map
 - Many kernels we care about in ML have this property
- What do we do if ϕ has infinite dimensions?
 - We can't just compute with it normally!

Solution: Approximate feature maps

• Find a finite-dimensional feature map so that

$$K(x,y) \approx \phi(x)^T \phi(y)$$

• Typically, we want to find a family of feature maps ϕ_t such that

$$\phi_D: \mathbb{R}^d \to \mathbb{R}^D$$

$$\lim_{D \to \infty} \phi_D(x)^T \phi_D(y) = K(x, y)$$

Types of approximate feature maps

Deterministic feature maps

- Choose a fixed-a-priori method of approximating the kernel
- Generally not very popular because of the way they scale with dimensions

Random feature maps

 Choose a feature map at random (typically each feature is independent) such that

$$\mathbf{E}\left[\phi(x)^T\phi(y)\right] = K(x,y)$$

 Then prove with high probability that over some region of interest

$$|\phi(x)^T \phi(y) - K(x,y)| \le \epsilon$$

Types of Approximate Features (continued)

Orthogonal randomized feature maps

• Intuition behind this: if we have a feature map where for some i and j

$$e_i^T \phi(x) \approx e_j^T \phi(x)$$

then we can't actually learn much from including both features in the map.

 Strategy: choose the feature map at random, but subject to the constraint that the features be statistically "orthogonal" in some way.

Quasi-random feature maps

 Generate features using a low-discrepancy sequence rather than true randomness

Adaptive Feature Maps

- Everything before this didn't take the data into account
- Adaptive feature maps look at the actual training set and try to minimize the kernel approximation error using the training set as a guide
 - For example: we can do a random feature map, and then fine-tune the randomness to minimize the empirical error over the training set
 - Gaining in popularity
- Also, neural networks can be thought of as adaptive feature maps.

Summary: Many Ways to Learn Linear Models

Options for representing features:

- Learn with an exact feature map
- Learn with a kernel
- Learn with an approximate feature map

Other choices:

- Pre-compute feature map/Gram matrix and store in memory
- Re-compute feature map/kernel value at each iteration

Systems Tradeoffs

- Lots of tradeoffs here
- Do we spend more work up-front constructing a more sophisticated approximation, to save work on learning algorithms?
- Would we rather scale with the data, or scale to more complicated problems?
- Another task for hyperparameter optimization

Demo

Dimensionality reduction

Linear models are linear in the dimension

- But what if the dimension d is very large?
 - Example: if we have a high-dimensional kernel map

- It can be difficult to run SGD when the dimension is very high even if the cost is linear
 - This happens for other learning algorithms too

Idea: reduce the dimension

 If high dimension is the problem, can we just reduce d?

- This is the problem of dimensionality reduction.
- Dimensionality reduction benefits both statistics and systems
 - Statistical side: can help with generalization by identifying important subset of features
 - Systems side: lowers compute cost

Techniques for dimensionality reduction

Feature selection by hand

- Simple method
- But costly in terms of human effort

Principal component analysis (PCA)

- Identify the directions of highest variance in the dataset
- Then project onto those directions
- Many variants: e.g. kernel PCA

More techniques for dimensionality reduction

- Locality-sensitive hashing (LSH)
 - Hash input items into buckets so close-by elements map into the same buckets with high probability
 - Many methods of doing this too
- Johnson-Lindenstrauss transform (random projection)
 - General method for reducing dimensionality of any dataset
 - Just choose a random subspace and project onto that subspace

Johnson-Lindenstrauss lemma

Given a desired error $\epsilon \in (0,1)$, a set of m points in \mathbb{R}^d , and a reduced dimension D that satisfies $D > \frac{8 \log(m)}{\epsilon^2}$, there exists a linear map T such that

$$(1 - \epsilon) \cdot ||x - y||^2 \le ||T(x) - T(y)||^2 \le (1 + \epsilon) \cdot ||x - y||^2$$

for all points x and y in the set.

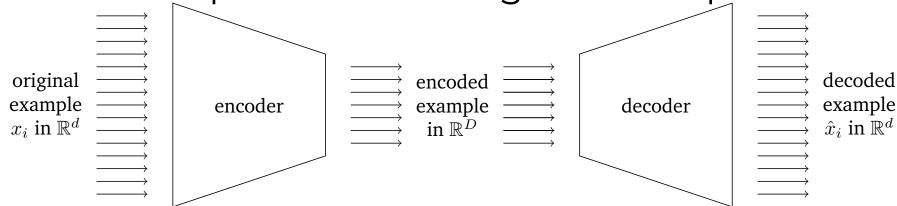
In fact, a randomly chosen linear map T works with high probability!

Consequences of J-L transform

- We only need $O(log(m) / \epsilon^2)$ dimensions to map a dataset of size m with relative distance accuracy.
 - No matter what the size of the input dataset was!
- This is a very useful result for many applications
 - Provides a generic way of reducing the dimension with guarantees
- But there are more specialized data-dependent ways of doing dimensionality reduction that can work better.

Autoencoders

- Use deep learning to learn two models
 - The encoder, which maps an example to a dimension-reduced representation
 - The decoder, which maps it back
- Train to minimize the distance between encoded-anddecoded examples and the original example.



Questions

- Upcoming things:
 - Paper la or lb review due on Wednesday
 - Papers 2a/2b in class on Wednesday
 - Start thinking about the class project
 - It will come faster than you think!