To get SGD off the ground, we don’t just need software. Here are some basic statistical techniques that we pretty much always use...
Mini-Batching
Gradient Descent vs. SGD

• Gradient descent: all examples at once

\[w_{t+1} = w_t - \alpha_t \frac{1}{N} \sum_{i=1}^{N} \nabla f(w_t; x_i) \]

• Stochastic gradient descent: one example at a time

\[w_{t+1} = w_t - \alpha_t \nabla f(w_t; x_{i_t}) \]

• Is it really all or nothing? Can we do something intermediate?
Mini-Batch Stochastic Gradient Descent

• An intermediate approach

\[w_{t+1} = w_t - \alpha_t \frac{1}{|B_t|} \sum_{i \in B_t} \nabla f(w_t; x_i) \]

where \(B_t \) is sampled uniformly from the set of all subsets of \(\{1, \ldots, N\} \) of size \(b \).

• The \(b \) parameter is the **batch size**
• Typically choose \(b \ll N \).

• Also called **mini-batch gradient descent**
How does runtime cost of Mini-Batch compare to SGD and Gradient Descent?

• Takes **less time to compute each update** than gradient descent
 • Only needs to sum up b gradients, rather than N

\[
 w_{t+1} = w_t - \alpha_t \frac{1}{|B_t|} \sum_{i \in B_t} \nabla f(w_t; x_i)
\]

• But takes **more time for each update** than SGD
 • So what’s the benefit?

• It’s more like gradient descent, so **maybe it converges faster** than SGD?
Advantages of Mini-Batch (reprise)

• Takes **less time to compute each update** than gradient descent
 • Only needs to sum up b gradients, rather than N

$$w_{t+1} = w_t - \alpha_t \frac{1}{|B_t|} \sum_{i \in B_t} \nabla f(w_t; x_i)$$

• Converges to a **smaller noise ball** than stochastic gradient descent

$$\lim_{T \to \infty} \mathbb{E} \left[\|w_T - w^*\|^2 \right] \leq \frac{\alpha M}{(2\mu - \alpha \mu^2)b}$$
How to choose the batch size?

• **Mini-batching is not a free win**
 • Naively, compared with SGD, it takes b times as much effort to get a b-times-as-accurate answer
 • But we could have gotten a b-times-as-accurate answer by just running SGD for b times as many steps with a step size of α/b.

• But it still makes sense to run it for **systems** and **statistical** reasons
 • Mini-batching exposes more parallelism
 • Mini-batching lets us estimate statistics about the full gradient more accurately

• Another use case for **hyperparameter optimization**
Mini-Batch SGD is very widely used

- Including in basically all neural network training

- $b = 32$ is a typical default value for batch size
Overfitting, Generalization Error, and Regularization
Minimizing Training Loss is Not our Real Goal

• Training loss looks like

\[h(w) = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i) \]

• What we actually want to minimize is **expected loss on new examples**
 • Drawn from some real-world distribution \(\phi \)

\[\bar{h}(w) = E_{x \sim \phi} [f(w; x)] \]

• Typically, assume the training examples were drawn from this distribution
Overfitting

• Minimizing the training loss **doesn't generally minimize the expected loss** on new examples
 • They are two different objective functions after all

• Difference between the empirical loss on the training set and the expected loss on new examples is called the **generalization error**

• Even a model that has high accuracy on the training set can have terrible performance on new examples
 • Phenomenon is called **overfitting**
How to address overfitting

• Many, many techniques to deal with overfitting
 • Have varying computational costs

• But this is a systems course...so what can we do with little or no extra computational cost?

• Notice from the demo that some loss functions do better than others
 • Can we modify our loss function to prevent overfitting?
Regularization

- Add an extra **regularization term** to the objective function

- Most popular type: **L2 regularization**

\[h(w) = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i) + \sigma^2 \|w\|_2^2 = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i) + \sigma^2 \sum_{k=1}^{d} x_k^2 \]

- Also popular: **L1 regularization**

\[h(w) = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i) + \gamma \|w\|_1 = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i) + \gamma \sum_{k=1}^{d} \|x_k\| \]
Benefits of Regularization

- **Cheap to compute**
 - For SGD and L2 regularization, there’s just an extra scaling

\[w_{t+1} = (1 - 2\alpha_t \sigma^2) w_t - \alpha_t \nabla f (w_t; x_{i_t}) \]

- **L2 regularization makes the objective strongly convex**
 - This makes it easier to get and prove bounds on convergence

- **Helps with overfitting**
Demo
How to choose the regularization parameter?

• One way is to use an independent **validation set** to estimate the test error, and set the regularization parameter manually so that it is high enough to avoid overfitting
 • This is what we saw in the demo

• But doing this naively can be **computationally expensive**
 • Need to re-run learning algorithm many times

• Yet another use case for **hyperparameter optimization**
More general forms of regularization

• **Regularization** is used more generally to describe anything that helps prevent overfitting
 • By biasing learning by making some models more desirable *a priori*

• Many techniques that give throughput improvements also have a regularizing effect
 • Sometimes: a **win-win** of better statistical and hardware performance
Early Stopping
Asymptotically large training sets

• Setting 1: we have a distribution ϕ and we sample a very large (asymptotically infinite) number of points from it, then run stochastic gradient descent on that training set for only N iterations.

• Can our algorithm in this setting overfit?
 • No, because its training set is asymptotically equal to the true distribution.

• Can we compute this efficiently?
 • No, because its training set is asymptotically infinitely large
Consider a second setting

- Setting 1: we have a distribution ϕ and we sample a very large (asymptotically infinite) number of points from it, then run stochastic gradient descent on that training set for only N iterations.

- Setting 2: we have a distribution ϕ and we sample N points from it, then run stochastic gradient descent using each of these points exactly once.

- What is the difference between the output of SGD in these two settings?
 - **Asymptotically, there’s no difference!**
 - So SGD in Setting 2 will also never overfit
Early Stopping

- Motivation: if we only use each training example once for SGD, then we can’t overfit.

- So if we **only use each example a few times**, we probably won’t overfit too much.

- **Early stopping**: just stop running SGD before it converges.
Benefits of Early Stopping

• **Cheap to compute**
 • Literally just does less work
 • It seems like the technique was designed to make systems run faster

• **Helps with overfitting**
Another class of technique: Acceleration and Momentum
How does the step size affect convergence?

• Let’s go back to gradient descent

\[x_{t+1} = x_t - \alpha \nabla f(x_t) \]

• Simplest possible case: a quadratic function

\[f(x) = \frac{1}{2} x^2 \]

\[x_{t+1} = x_t - \alpha x_t = (1 - \alpha) x_t \]
Step size vs. convergence: graphically

\[|x_{t+1} - 0| = |1 - \alpha| |x_t - 0| \]
What if the curvature is different?

\[f(x) = 2x^2 \quad x_{t+1} = x_t - 4\alpha x_t = (1 - 4\alpha)x_t \]
Step size vs. curvature

• For these one-dimensional quadratics, how we should set the step size depends on the curvature
 • More curvature \rightarrow smaller ideal step size

• What about higher-dimensional problems?
 • Let’s look at a really simple quadratic that’s just a sum of our examples.

$$ f(x, y) = \frac{1}{2}x^2 + 2y^2 $$
Simple two dimensional problem

\[f(x, y) = \frac{1}{2}x^2 + 2y^2 \]

- Gradient descent:

\[
\begin{bmatrix}
 x_{t+1} \\
 y_{t+1}
\end{bmatrix} = \begin{bmatrix}
 x_t \\
 y_t
\end{bmatrix} - \alpha \begin{bmatrix}
 x_t \\
 4y_t
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 1 - \alpha & 0 \\
 0 & 1 - 4\alpha
\end{bmatrix} \begin{bmatrix}
 x_t \\
 y_t
\end{bmatrix}
\]
What’s the convergence rate?

• Look at the worst-case contraction factor of the update

\[
\max_{x,y} \frac{\left\| \begin{bmatrix} 1 - \alpha & 0 \\ 0 & 1 - 4\alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right\|}{\left\| \begin{bmatrix} x \\ y \end{bmatrix} \right\|} = \max(|1 - \alpha|, |1 - 4\alpha|)
\]

• Contraction is maximum of previous two values.
Convergence of two-dimensional quadratic
What does this example show?

• We’d like to set the step size larger for dimension with less curvature, and smaller for the dimension with more curvature.

• But we can’t, because there is only a single step-size parameter.

• There’s a trade-off
 • Optimal convergence rate is substantially worse than what we’d get in each scenario individually — individually we converge in one iteration.
For general quadratics

- For PSD symmetric A,
 \[f(x) = \frac{1}{2} x^T Ax \]

- Gradient descent has update step
 \[x_{t+1} = x_t - \alpha Ax_t = (I - \alpha A)x_t \]

- What does the convergence rate look like in general?
Convergence rate for general quadratics

\[
\max_x \frac{\| (I - \alpha A)x \|}{\| x \|} = \max_x \frac{1}{\| x \|} \left\| \left(I - \alpha \sum_{i=1}^{n} \lambda_i u_i u_i^T \right) x \right\|
\]

\[
= \max_x \frac{\| \sum_{i=1}^{n} (1 - \alpha \lambda_i) u_i u_i^T x \|}{\| \sum_{i=1}^{n} u_i u_i^T x \|}
\]

\[
= \max_i |1 - \alpha \lambda_i|
\]

\[
= \max(1 - \alpha \lambda_{\text{min}}, \alpha \lambda_{\text{max}} - 1)
\]
Optimal convergence rate

• Minimize:
 \[\max(1 - \alpha \lambda_{\min}, \alpha \lambda_{\max} - 1) \]

• Optimal value occurs when
 \[1 - \alpha \lambda_{\min} = \alpha \lambda_{\max} - 1 \Rightarrow \alpha = \frac{2}{\lambda_{\max} + \lambda_{\min}} \]

• Optimal rate is
 \[\max(1 - \alpha \lambda_{\min}, \alpha \lambda_{\max} - 1) = \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} \]
What affects this optimal rate?

\[
\text{rate} = \frac{\lambda_{\text{max}} - \lambda_{\text{min}}}{\lambda_{\text{max}} + \lambda_{\text{min}}}
\]

\[
= \frac{\lambda_{\text{max}}/\lambda_{\text{min}} - 1}{\lambda_{\text{max}}/\lambda_{\text{min}} + 1}
\]

\[
= \frac{\kappa - 1}{\kappa + 1}.
\]

- Here, \(\kappa \) is called the **condition number** of the matrix \(A \).

\[
\kappa = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}
\]

- Problems with larger condition numbers converge slower.
 - Called **poorly conditioned**.
Poorly conditioned problems

• Intuitively, these are problems that are highly curved in some directions but flat in others

• Happens pretty often in machine learning
 • Measure something unrelated → low curvature in that direction
 • Also affects stochastic gradient descent

• How do we deal with this?
Momentum
Motivation

• Can we tell the difference between the curved and flat directions using information that is already available to the algorithm?

• Idea: in the one-dimensional case, if the gradients are reversing sign, then the step size is too large
 • Because we’re over-shooting the optimum
 • And if the gradients stay in the same direction, then step size is too small

• Can we leverage this to make steps smaller when gradients reverse sign and larger when gradients are consistently in the same direction?
Polyak Momentum

• Add extra **momentum term** to gradient descent

\[x_{t+1} = x_t - \alpha \nabla f(x_t) + \beta (x_t - x_{t-1}) \]

• Intuition: if current gradient step is in same direction as previous step, then move a little further in that direction.
 • And if it’s in the opposite direction, move less far.

• Also known as the **heavy ball method**.
Momentum for 1D Quadratics

\[f(x) = \frac{\lambda}{2} x^2 \]

- Momentum gradient descent gives

\[x_{t+1} = x_t - \alpha \lambda x_t + \beta (x_t - x_{t-1}) \]
\[= (1 + \beta - \alpha \lambda) x_t - \beta x_{t-1} \]
Characterizing momentum for 1D quadratics

• Start with \(x_{t+1} = (1 + \beta - \alpha \lambda)x_t - \beta x_{t-1} \)

• Trick: let \(x_t = \beta^{t/2}z_t \)

\[
\beta^{(t+1)/2}z_{t+1} = (1 + \beta - \alpha \lambda)\beta^{t/2}z_t - \beta \cdot \beta^{(t-1)/2}z_{t-1}
\]

\[
z_{t+1} = \frac{1 + \beta - \alpha \lambda}{\sqrt{\beta}}z_t - z_{t-1}
\]
Characterizing momentum (continued)

• Let

\[u = \frac{1 + \beta - \alpha \lambda}{2\sqrt{\beta}} \]

• Then we get the simplified characterization

\[z_{t+1} = 2uz_t - z_{t-1} \]

• This is a degree-\(t \) polynomial in \(u \)
Chebyshev Polynomials

• If we initialize such that $z_0 = 1, \; z_1 = u$ then these are a special family of polynomials called the **Chebyshev polynomials**

$$z_{t+1} = 2uz_t - z_{t-1}$$

• Standard notation:

$$T_{t+1}(u) = 2uT_t(u) - T_{t-1}(u)$$

• These polynomials have an important property: for all t

$$-1 \leq u \leq 1 \Rightarrow -1 \leq z_t \leq 1$$
Chebyshev Polynomials

$T_0(u) = 1$
Chebyshev Polynomials

\[T_1(u) = u \]
Chebyshev Polynomials

\[T_2(u) = 2u^2 - 1 \]
Chebyshev Polynomials
Chebyshev Polynomials
Chebyshev Polynomials
Chebyshev Polynomials
Characterizing momentum (continued)

What does this mean for our 1D quadratics?

Recall that we let \(x_t = \beta^{t/2} z_t \)

\[
x_t = \beta^{t/2} \cdot x_0 \cdot T_t(u)
= \beta^{t/2} \cdot x_0 \cdot T_t \left(\frac{1 + \beta - \alpha \lambda}{2\sqrt{\beta}} \right)
\]

So

\[-1 \leq \frac{1 + \beta - \alpha \lambda}{2\sqrt{\beta}} \leq 1 \Rightarrow |x_t| \leq \beta^{t/2} |x_0|\]
Consequences of momentum analysis

• Convergence rate depends **only on momentum parameter** β
 • Not on step size or curvature.

• We **don’t need to be that precise in setting the step size**
 • It just needs to be within a window
 • Pointed out in “YellowFin and the Art of Momentum Tuning” by Zhang et. al.

• If we have a multidimensional quadratic problem, the **convergence rate will be the same in all directions**
 • This is different from the gradient descent case where we had a trade-off
Choosing the parameters

• How should we **set the step size and momentum parameter** if we only have bounds on λ?

• Need:

$$-1 \leq \frac{1 + \beta - \alpha \lambda}{2\sqrt{\beta}} \leq 1$$

• Suffices to have:

$$-1 = \frac{1 + \beta - \alpha \lambda_{\text{max}}}{2\sqrt{\beta}} \quad \text{and} \quad \frac{1 + \beta - \alpha \lambda_{\text{min}}}{2\sqrt{\beta}} = 1$$
Choosing the parameters (continued)

• Adding both equations:

\[0 = \frac{2 + 2\beta - \alpha \lambda_{\text{max}} - \alpha \lambda_{\text{min}}}{2\sqrt{\beta}} \]

\[0 = 2 + 2\beta - \alpha \lambda_{\text{max}} - \alpha \lambda_{\text{min}} \]

\[\alpha = \frac{2 + 2\beta}{\lambda_{\text{max}} + \lambda_{\text{min}}} \]
Choosing the parameters (continued)

• Subtracting both equations:

\[
\frac{1 + \beta - \alpha \lambda_{\text{min}} - 1 - \beta + \alpha \lambda_{\text{max}}}{2\sqrt{\beta}} = 2
\]

\[
\frac{\alpha(\lambda_{\text{max}} - \lambda_{\text{min}})}{2\sqrt{\beta}} = 2
\]
Choosing the parameters (continued)

• Combining these results:

\[\alpha = \frac{2 + 2\beta}{\lambda_{\text{max}} + \lambda_{\text{min}}} \cdot \frac{\alpha(\lambda_{\text{max}} - \lambda_{\text{min}})}{2\sqrt{\beta}} = 2 \]

\[\frac{2 + 2\beta}{\lambda_{\text{max}} + \lambda_{\text{min}}} \cdot \frac{(\lambda_{\text{max}} - \lambda_{\text{min}})}{2\sqrt{\beta}} = 2 \]

\[0 = 1 - 2\sqrt{\beta} \frac{\lambda_{\text{max}} + \lambda_{\text{min}}}{\lambda_{\text{max}} - \lambda_{\text{min}}} + \beta \]
Choosing the parameters (continued)

• Quadratic formula:

\[0 = 1 - 2\sqrt{\beta} \frac{\lambda_{\text{max}} + \lambda_{\text{min}}}{\lambda_{\text{max}} - \lambda_{\text{min}}} + \beta \]

\[\sqrt{\beta} = \frac{\kappa + 1}{\kappa - 1} - \sqrt{\left(\frac{\kappa + 1}{\kappa - 1}\right)^2 - 1} \]

\[= \frac{\kappa + 1}{\kappa - 1} - \sqrt{\frac{4\kappa}{\kappa^2 - 2\kappa + 1}} \]

\[= \frac{\kappa + 1}{\kappa - 1} - \frac{2\sqrt{\kappa}}{\kappa - 1} = \frac{(\sqrt{\kappa} - 1)^2}{\kappa - 1} = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \]
Gradient Descent versus Momentum

• Recall: gradient descent had a convergence rate of

\[
\frac{\kappa - 1}{\kappa + 1}
\]

• But with momentum, the optimal rate is

\[
\sqrt{\beta} = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}
\]

• This is called convergence at an accelerated rate
Demo
Setting the parameters

• How do we set the momentum in practice for machine learning?

• One method: hyperparameter optimization

• Another method: just set $\beta = 0.9$
 • Works across a range of problems
 • Actually quite popular in deep learning
Nesterov momentum
What about more general functions?

- Previous analysis was for quadratics

- Does this work for general convex functions?

- Answer: *not in general*
 - We need to do something slightly different
Nesterov Momentum

- Slightly different rule

\[x_{t+1} = y_t - \alpha \nabla f(y_t) \]
\[y_{t+1} = x_{t+1} + \beta (x_{t+1} - x_t) \]

- Main difference: separate the momentum state from the point that we are calculating the gradient at.
Nesterov Momentum Analysis

• Converges at an accelerated rate for ANY convex problem

\[\sqrt{\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa}}} \]

• Optimal assignment of the parameters:

\[\alpha = \frac{1}{\lambda_{\text{max}}}, \quad \beta = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \]
Nesterov Momentum is Also Very Popular

• People use it in practice for deep learning all the time
• Significant speedups in practice
Demo
What about SGD?

• All our above analysis was for *gradient descent*

• But momentum still produces empirical improvements when used with stochastic gradient descent

• And we’ll see how in one of the papers we’re reading on **Monday**!