In [1]:
using PyPlot
using LinearAlgebra
using Statistics

# Part 1: Overfitting¶

In [2]:
x = randn(10); y = sqrt(0.95) * x + sqrt(0.05) * randn(10);
In [3]:
scatter(x, y);
In [4]:
# fit with linear regression

f = [x ones(10)];
w = y' / f';

xplot = collect(-1.5:0.1:1.5);
fplot = [xplot ones(length(xplot))]

plot(xplot, fplot * w'; color="red");
scatter(x, y);

xlim([-1.5, 1.5]);
ylim([-1.5, 1.5]);

training_error = round(mean((y - f * w').^2); digits=3)
println("training error: $(training_error)") training error: 0.052 In [5]: # fit with degree 10 polynomial f = hcat([x.^k for k = 0:10]...); w = y' / f'; xplot = collect(-1.5:0.01:1.5); fplot = hcat([xplot.^k for k = 0:10]...) plot(xplot, fplot * w'; color="red"); scatter(x, y); xlim([-1.5, 1.5]); ylim([-1.5, 1.5]); training_error = round(mean((y - f * w').^2); digits=3) println("training error:$(training_error)")
training error: 0.0
In [6]:
test_x = randn(20); test_y = sqrt(0.9) * test_x + sqrt(0.1) * randn(20);
In [7]:
# fit with linear regression

f = [x ones(10)];
w = y' / f';

xplot = collect(-1.5:0.1:1.5);
fplot = [xplot ones(length(xplot))]

plot(xplot, fplot * w'; color="red");
scatter(x, y);
scatter(test_x, test_y; color="orange");

xlim([-1.5, 1.5]);
ylim([-1.5, 1.5]);

training_error = round(mean((y - f * w').^2); digits=3)
println("training error: $(training_error)") test_f = [test_x ones(length(test_x))]; test_error = round(mean((test_y - test_f * w').^2); digits=3) println("test error:$(test_error)")
training error: 0.052
test error: 0.106
In [8]:
# fit with degree 10 polynomial

f = hcat([x.^k / factorial(k) for k = 0:10]...);
w = y' / f';

xplot = collect(-1.5:0.01:1.5);
fplot = hcat([xplot.^k / factorial(k) for k = 0:10]...)

plot(xplot, fplot * w'; color="red");
scatter(x, y);
scatter(test_x, test_y; color="orange");

xlim([-1.5, 1.5]);
ylim([-1.5, 1.5]);

training_error = round(mean((y - f * w').^2); digits=3)
println("training error: $(training_error)") test_f = hcat([test_x.^k / factorial(k) for k = 0:10]...) test_error = round(mean((test_y - test_f * w').^2); digits=3) println("test error:$(test_error)")
training error: 0.0
test error: 358821.054

# Part 2: Regularization¶

Suppose that we use regularization such that for a polynomial of the form $$f_w(x) = \sum_{k = 0}^{10} \frac{w_k x^k}{k!}$$ the loss function is $$h(w) = \sum_{i=1}^N (f_w(x_i) - y_i)^2 + \sigma^2 \| w \|^2.$$ If $A$ is the matrix such that $$A_{i,j} = \frac{x_i^j}{j!}$$ then equivalently $$h(w) = \left\| \left[\begin{array}{c} A \\ \sigma I \end{array} \right] w - \left[\begin{array}{c} y \\ 0 \end{array} \right] \right\|^2$$ so we can still solve this easily with linear regression.

In [9]:
# fit with regularized degree 10 polynomial

sigma = 0.01

f = hcat([x.^k / factorial(k) for k = 0:10]...);
f_reg = vcat(f, sigma * Matrix{Float64}(I, 11, 11))
y_reg = vcat(y, zeros(11))

w = y_reg' / f_reg';

xplot = collect(-1.5:0.01:1.5);
fplot = hcat([xplot.^k / factorial(k) for k = 0:10]...)

plot(xplot, fplot * w'; color="red");
scatter(x, y);
scatter(test_x, test_y; color="orange");

xlim([-1.5, 1.5]);
ylim([-1.5, 1.5]);

training_error = round(mean((y - f * w').^2); digits=3)
println("training error: $(training_error)") test_f = hcat([test_x.^k / factorial(k) for k = 0:10]...) test_error = round(mean((test_y - test_f * w').^2); digits=3) println("test error:$(test_error)")
training error: 0.039
test error: 0.151
In [10]:
function regularized_fit_error(sigma)
test_x = randn(10000); test_y = sqrt(0.9) * test_x + sqrt(0.1) * randn(10000);

f = hcat([x.^k / factorial(k) for k = 0:10]...);
f_reg = vcat(f, sigma * Matrix{Float64}(I, 11, 11))
y_reg = vcat(y, zeros(11))

w = y_reg' / f_reg';

test_f = hcat([test_x.^k / factorial(k) for k = 0:10]...)

training_error = round(mean((y - f * w').^2); digits=3)
test_error = round(mean((test_y - test_f * w').^2); digits=3)

return (training_error, test_error)
end
Out[10]:
regularized_fit_error (generic function with 1 method)
In [11]:
sigmas = 10 .^ (-3:0.1:2);
training_errors = zeros(length(sigmas));
test_errors = zeros(length(sigmas));

for i = 1:length(sigmas)
(training_errors[i], test_errors[i]) = regularized_fit_error(sigmas[i]);
end

loglog(sigmas, training_errors, label="training error");
loglog(sigmas, test_errors, label="test error");
xlabel("regularization coefficient");
ylabel("error");
legend();
In [ ]: