Hyperparameter optimization

CS6787 Lecture 6 — Fall 2019
But First…
Final Project Parameters

CS 6787 — Fall 2019
Overview

• Implement a machine learning system to solve a problem

• Use one or more of the techniques we discussed in class

• To achieve an improvement over some baseline method
 • Measuring both statistical performance and hardware performance
 • Or at least evaluate and attempt to achieve such a speedup

• Otherwise, very open-ended
 • Groups of up to three
Project proposals due in two weeks

• The main body should be about one page in length.
• It should describe the project you intend to do.
• It should contain at least one citation of a relevant paper that we did not cover in class.
• It should include some preliminary or exploratory work you've already done, that helps to support the idea that your project is feasible.
 • Doesn’t have to be much work at all, just a nonzero amount of work.
• In addition to the one-page text proposal, one short experiment plan per person
Experiment plan

• The hypothesis

• The proxy

• The protocol

• Expected results
In-class feedback activity

• On Wednesday, October 16

• Basically, breakout sessions to discuss your project ideas with your peers.
 • You are not committing to work on the specific project you present during the feedback activity. You can always change your ideas as a result of the feedback.

• Prepare a two-minute verbal pitch of your ideas.

• And try not to sit with others in your group.
 • To get a wider variety of feedback.
Questions?
Hyperparameter optimization
Review — We’ve covered many methods

• Stochastic gradient descent
 • Step size/learning rate, how long to run
• Mini-batching
 • Batch size
• Momentum
 • Momentum parameter
• Kernel trick/feature extraction
 • How many features to extract
• Variance reduction
 • Step size, epoch length

How do we set these parameters?
So Far: Theory

- Theoretical analysis of convex problems gives us a **recipe** for assigning hyperparameters.
 - Also gives **guarantees** that the algorithm will converge with some optimal rate.
 - Often based on strong-convexity/Lipschitz constants μ, L, etc.
 - Parameters that we can **bound analytically**, regardless of the data.
- This is usually enough to get an **asymptotically optimal rate**.
 - Certainly in the worst case.
The Worst-Case Perspective

• Essentially, the theory I showed you is doing
 \[
 \arg \min_{\text{parameters}} \max_{\text{data}} \ (\text{objective})
 \]

• We’re not using the training data at all to set the parameters
 • Or if we are, we’re only using it to compute constants like μ and L

• Question: can we use the data to improve our choice of parameters over what the theory gives us?
What happened?

• Theory only minimizes an upper bound on the objective.

• But actual algorithm can do much better than the bound.
 • As we saw in the demo.

• Problem: in the demo, to find the best parameter setting, we had to first solve the problem exactly, then run the algorithm many times.
 • Computationally intractable in practice!

• Can we use a cheaper heuristic to set the parameters?
Hyperparameter Optimization
Hyperparameter Optimization

• Also called *metaparameter optimization*

• Also called *tuning*

• Any system that chooses hyperparameters automatically

• What’s the difference between the model parameters, and the hyperparameters?
Many Settings; Many Strategies

• In some settings, just care about the model accuracy
 • Just want to set things like the learning rate

• In other settings, also want to make the hardware fast
 • Want to choose what hardware to run on, how many cores, etc.

• In all settings, there’s many ways to do hyperparameter optimization
Simplest Strategy: The Null Hyperparameter Optimizer

• Simplest thing to do is to just set the parameters based on folklore.

• Minibatch size: \(b = _ \)?

• Momentum: \(\beta = _ \)?

• SVRG: epoch length = \(? \times \) Training Set Size
The Effect of Using Folklore

• **Folklore can lead you astray!**
 • Can actually find **simple cases where the folklore settings are wrong**.
 • This is a good way to start a research paper.

• …but **folklore is folklore for a reason!**
 • It exists where people have found empirically that they get good results.
 • So when you try something new, the **first thing to compare to is folklore**.

• To be honest, the results you get from just using the folklore settings are really not that bad for a lot of practical purposes.
From the simplest strategy to...
The Most Complicated Strategy

• Spend **twenty-five years training a Strong AI on custom hardware**, then have it set your hyperparameters.

• ...more explicitly, just **get a human to set your hyperparameters**.

• Fortunately, we happen to have a lot of humans
 • But human effort, particularly expert human effort, doesn’t scale.
Tuning By Hand

• Just fiddle with the parameters until you get the results you want

• Probably the most common type of hyperparameter optimization

• Upsides: the results are generally pretty good…

• Downsides: lots of effort, and no theoretical guarantees
 • Although there’s nothing fundamental that prevents us from having theory here
Demo
Grid Search

• Define some grid of parameters you want to try

• Try all the parameter values in the grid
 • By running the whole system for each setting of parameters

• Then choose the setting with the best result

• Essentially a brute force method
Downsides of Grid Search

• As the number of parameters increases, the cost of grid search increases exponentially!
 • Why?

• Still need some way to choose the grid properly
 • Something this can be as hard as the original hyperparameter optimization

• Can’t take advantage of any insight you have about the system!
Making Grid Search Fast

• **Early stopping to the rescue**
 • Can run all the grid points for one epoch, then discard the half that performed worse, then run for another epoch, discard half, and continue.

• **Can take advantage of parallelism**
 • Run all the different parameter settings independently on different servers in a cluster.
 • An *embarrassingly parallel task*.
 • Downside: *doesn’t reduce the energy cost.*
One Variant: Random Search

• This is just grid search, but with randomly chosen points instead of points on a grid.

• **This solves the curse of dimensionality**
 • Don’t need to increase the number of grid points exponentially as the number of dimensions increases.

• Problem: with random search, **not necessarily going to get anywhere near the optimal parameters** in a finite sample.
One Variant: Best Ball

• Works with epochs.

• At each epoch, do a small grid search around the current hyperparameter settings

• Then evaluate the objective and choose the “best ball”
 • The choice of parameters that gave the best objective for that epoch

• And repeat until a solution of desired quality is achieved.
An Alternative: Bayesian Optimization

• Statistical approach for **minimizing noisy black-box functions**.

• Idea: **learn a statistical model** of the function from hyperparameter values to the loss function
 • Then choose parameters to minimize the loss under this model

• Main benefit: choose the hyperparameters to test not at random, but in a way that gives the **most information about the model**
 • This lets it learn faster than grid search
Effect of Bayesian Optimization

• Downside: it’s a pretty **heavyweight method**
 • The updates are not as simple-to-implement as grid search

• Upside: empirically it has been demonstrated to **get better results in fewer experiments**
 • Compared with grid search and random search

• Pretty widely used method
 • Lots of research opportunities here.
A related method: DFO

• **Derivative-free optimization**

• Also called *zeroth-order optimization*

• These methods optimize a function using only evaluations, no derivatives

• Ideal for use with hyperparameter optimization
 • Also ideal for **reinforcement learning**
The opposite of DFO
Gradient-based optimization

• These strategies say: “I’m doing SGD to learn, I may as well use it to optimize my hyperparameters.”

• When we can efficiently differentiate with respect to the hyperparameters, this strategy actually works pretty well.

• But generally, we can’t do it.
Methods that Look at the Data

• Many methods look at curvature/variance info to decide how to set hyperparameters, and update their settings throughout the algorithm.

• Example: **ADAGRAD**

• Example: **Adam**
 • Which you will be reading in a few weeks.
Evaluating the Hyperparameter Optimization
How to evaluate the hyperparameters?

• Unlike the model parameters, we’re **not given a loss function**

• Can’t we just use the training loss?

• **Not always**: we don’t want to **overfit the hyperparameters**
 • Especially not when they are things that affect the model
Cross-Validation

• Partition part of the available data to create an validation dataset that we don’t use for training.

• Then use that set to evaluate the hyperparameters.

• Typically, multiple rounds of cross-validation are performed using different partitions
 • Can get a very good sense of how good the hyperparameters are
 • But at a significant computational cost!
Evaluating the System Cost

• In practice we don’t just care about the statistics
 • Not just about the accuracy after a fixed number of iterations

• We care about wall-clock time, and we care about energy
 • How much did solving this problem actually cost?

• The parameters we chose can affect these systems properties
 • As we saw with our SVRG demo!

• Need to include systems cost as part of the metric!
Hardware efficiency

• How long does an iteration take, on average?

• Hardware efficiency measures the systems cost of doing a single update.

• Key point: many hyperparameters do not affect hardware efficiency
 • Which ones?

• Which hyperparameters do affect hardware efficiency?
Statistical Efficiency

• How many iterations do we need to get to a specified level of accuracy?

• Statistical efficiency measures how many updates we need to get an answer of the quality that we want.

• Which hyperparameters affect statistical efficiency?
 • And which ones don’t?
Total performance

• Total cost of running the algorithm is:

 HARDWARE EFFICIENCY x STATISTICAL EFFICIENCY

• We can estimate these quantities separately, then use their product to evaluate our hyperparameters.

• For example, we can use theory to evaluate statistical efficiency and a hardware model to evaluate hardware efficiency.
Benefits of Looking at Both

• Looking at both statistical and hardware efficiency together has some important benefits!

• Many times the optimal parameter settings are different than if you set the parameters to optimize hardware efficiency or statistical efficiency individually.

• There’s a lot of open research opportunities here!
One example: YellowFin Tuner

- System that among other things tunes the **momentum**
 - As well as using **asynchronous parallelism**, which we’ll talk about later.

Figure 1 from “YellowFin and the Art of Momentum Tuning” Zhang et al, 2017.
Questions?

• Upcoming things
 • Fall break next Monday — no lecture
 • Paper review 4a or 4b due Today
 • Paper Presentation #5 on Wednesday
 • In class discussion of project ideas the following Wednesday