Memory as a Bottleneck

• So far, we’ve just been talking about compute
 • e.g. techniques to decrease the amount of compute by decreasing iterations

• But machine learning systems need to process huge amounts of data

• Need to store, update, and transmit this data

• As a result: memory is of critical importance
 • Many applications are memory-bound
Memory: The Simplified Picture

- Compute
- RAM
Memory: The Multicore Picture
Memory: The Distributed Picture

Network

GPU

GPU
What can we learn from these pictures?

• Many more memory boxes than compute boxes
 • And even more as we zoom out

• Memory has a hierarchical structure

• Locality matters
 • Some memory is closer and easier to access than others
 • Also have standard concerns for CPU cache locality
What limits us?

• **Memory capacity**
 • How much data can we store locally in RAM and/or in cache?

• **Memory bandwidth**
 • How much data can we load from some source in a fixed amount of time?

• **Memory locality**
 • Roughly, how often is the data that we need stored nearby?

• **Power**
 • How much energy is required to operate all of this memory?
One way to help: Low-Precision Computation
Low-Precision Computation

• Traditional ML systems use 32-bit or 64-bit floating point numbers

• But do we actually need this much precision?
 • Especially when we have inputs that come from noisy measurements

• Idea: instead use 8-bit or 16-bit numbers to compute
 • Can be either floating point or fixed point
 • On an FPGA or ASIC can use arbitrary bit-widths
Low Precision and Memory

- Major benefit of low-precision: **uses less memory bandwidth**

Precision in DRAM

- 64-bit float vector
 - F64 F64 F64
 - 5 numbers/ns (assuming ~40 GB/sec memory bandwidth)

- 32-bit float vector
 - F32 F32 F32 F32 F32
 - 10 numbers/ns

- 16-bit int vector
 - 20 numbers/ns

- 8-bit int vector
 - 40 numbers/ns

Memory Throughput

- 5 numbers/ns
- 10 numbers/ns
- 20 numbers/ns
- 40 numbers/ns
Low Precision and Memory

- Major benefit of low-precision: **takes up less space**

Precision in DRAM
- 64-bit float vector
 - F64

- 32-bit float vector
 - F32

- 16-bit int vector
 - ...

- 8-bit int vector
 - ...

Cache Capacity
- 4 M numbers
- 8 M numbers
- 16 M numbers
- 32 M numbers

(assuming ~32 MB cache)
Low Precision and Parallelism

- Another benefit of low-precision: use **SIMD instructions** to get more parallelism on CPU

<table>
<thead>
<tr>
<th>SIMD Precision</th>
<th>SIMD Parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-bit float vector</td>
<td>4 multiplies/cycle (vmulpd instruction)</td>
</tr>
<tr>
<td>32-bit float vector</td>
<td>8 multiplies/cycle (vmlups instruction)</td>
</tr>
<tr>
<td>16-bit int vector</td>
<td>16 multiplies/cycle (vpmaddwd instruction)</td>
</tr>
<tr>
<td>8-bit int vector</td>
<td>32 multiplies/cycle (vpmaddubsw instruction)</td>
</tr>
</tbody>
</table>
Low Precision and Power

• Low-precision computation can even have a super-linear effect on energy

• Memory energy can also have quadratic dependence on precision
Effects of Low-Precision Computation

• **Pros**
 • Fit more numbers (and therefore more training examples) in memory
 • Store more numbers (and therefore larger models) in the cache
 • Transmit more numbers per second
 • Compute faster by extracting more parallelism
 • Use less energy

• **Cons**
 • Limits the numbers we can represent
 • Introduces quantization error when we store a full-precision number in a low-precision representation
Numeric Formats in Machine Learning

How do we represent numbers as bit patterns on a computer?
A representative setup: DNN training

Many of the large-scale learning tasks we want to accelerate are deep learning tasks.

A **deep neural network (DNN)** looks like this:

Many layers connected to each other in series.

To train, we compute the loss gradient and run stochastic gradient descent:

$$w_{t+1} = w_t - \alpha_t \nabla f(w_t; x_t)$$
A representative setup: DNN training

- Standard method of computing gradient for SGD uses backpropagation.
- Computationally, it looks like this on the level of a single layer:

 ![Diagram showing the flow of signals through a single layer of a neural network, including the computation of weight gradients and their storage.]

 - Inputs: \(\text{activations}_{\text{prev}} \)
 - Weights
 - Outputs: \(\text{activations} \)
 - Weight gradient
 - Weight accumulator
 - Storage
 - Backward signals: \(\text{backward}, \text{backward}_{\text{next}} \)

All of the signals here are vectors of real numbers. But how are they stored on a computer?
The standard approach

Single-precision floating point (FP32)

• 32-bit floating point numbers

\[
\text{sign \quad 8-bit exponent \quad 23-bit mantissa}
\]

• Usually, the represented value is

represented number = (-1)^{\text{sign}} \cdot 2^{\text{exponent}-127} \cdot 1.b_{22}b_{21}b_{20} \ldots b_0

• Has a machine epsilon (measures relative error) of \(\epsilon_{\text{machine}} \approx 1.2 \times 10^{-7} \).
A low-precision alternative
FP16/Half-precision floating point

• 16-bit floating point numbers

![Diagram showing 16-bit floating point format: 1-bit sign, 5-bit exponent, 10-bit significand]

• Usually, the represented value is

\[x = (-1)^{\text{sign bit}} \cdot 2^{\text{exponent} - 15} \cdot 1.\text{significand}_2 \]
Numeric properties of 16-bit floats

• A larger machine epsilon (larger rounding errors) of $\epsilon_{\text{machine}} \approx 9.8 \times 10^4$
 • Compare 32-bit floats which had $\epsilon_{\text{machine}} \approx 1.2 \times 10^{-7}$.

• A smaller overflow threshold (easier to overflow) at about 6.5×10^4
 • Compare 32-bit floats where it’s 3.4×10^{38}

• A larger underflow threshold (easier to underflow) at about 6.0×10^{-8}.
 • Compare 32-bit floats where it’s 1.4×10^{-45}

With all these drawbacks, does anyone use this?
Half-precision floating point support

• Supported on most modern machine-learning-targeted GPUs
 • Including efficient implementation on NVIDIA Pascal GPUs

<table>
<thead>
<tr>
<th>GPU</th>
<th>DFMA (FP64 TFLOP/s)</th>
<th>FFMA (FP32 TFLOP/s)</th>
<th>HFMA2 (FP16 TFLOP/s)</th>
<th>DP4A (INT8 TIOP/s)</th>
<th>DP2A (INT16/8 TIOP/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP100 (Tesla P100 NVLink)</td>
<td>5.3</td>
<td>10.6</td>
<td>21.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>GP102 (Tesla P40)</td>
<td>0.37</td>
<td>11.8</td>
<td>0.19</td>
<td>43.9</td>
<td>23.5</td>
</tr>
<tr>
<td>GP104 (Tesla P4)</td>
<td>0.17</td>
<td>8.9</td>
<td>0.09</td>
<td>21.8</td>
<td>10.9</td>
</tr>
</tbody>
</table>

Table 1: Pascal-based Tesla GPU peak arithmetic throughput for half-, single-, and double-precision fused multiply-add instructions, and for 8- and 16-bit vector dot product instructions. (Boost clock rates are used in calculating peak throughputs. TFLOP/s: Tera Floating-point Operations per Second. TIOP/s: Tera Integer Operations per Second. https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/)

• Good empirical results for deep learning

Another common option
Bfloat16 — “brain floating point”

• Another 16-bit floating point number

```
<table>
<thead>
<tr>
<th>1-bit</th>
<th>8-bit</th>
<th>7-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign</td>
<td>exponent</td>
<td>significand</td>
</tr>
</tbody>
</table>
```

• Main benefit: numeric range is **now the same as single-precision float**
 • Since it looks like a truncated 32-bit float
 • This is useful because ML applications are **more tolerant to quantization error** than they are to overflow
An alternative to low-precision floating point

Fixed point numbers

- \(p + q + 1 \)-bit fixed point number

The represented number is

\[x = (-1)^{\text{sign bit}} \left(\text{integer part} + 2^{-q} \cdot \text{fractional part} \right) \]

\[= 2^{-q} \cdot \text{whole thing as signed integer} \]
Arithmetic on fixed point numbers

• **Simple and efficient**
 • Can just use preexisting integer processing units
 • **Lower power** than floating point operations with the same number of bits

• **Mostly exact**
 • Underflow impossible
 • Overflow can happen, but is easy to understand
 • Can always convert to a higher-precision representation to avoid overflow

• Can represent a **much narrower range of numbers than float**
Support for fixed-point arithmetic

- Anywhere integer arithmetic is supported
 - CPUs, GPUs
 - Although not all GPUs support 8-bit integer arithmetic
 - And AVX2 does not have all the 8-bit arithmetic instructions we’d like

- Particularly effective on FPGAs and ASICs
 - Where floating point units are costly

- Sadly, very little support for other precisions
 - 4-bit operations would be particularly useful
A powerful hybrid approach
Block Floating Point

• Motivation: when storing a vector of numbers, often these numbers all lie in the same range.
 • So they will have the same or similar exponent, if stored as floating point.

• **Block floating point** shares a single exponent among multiple numbers.
A more specialized approach

Custom Quantization Points

• Even more generally, we can just have a list of 2^b numbers and say that these are the numbers a particular low-precision string represents
 • We can think of the bit string as indexing a number in a dictionary

• Gives us total freedom as to range and scaling
 • But computation can be tricky

• Some recent research into using this with hardware support
 • “The ZipML Framework for Training Models with End-to-End Low Precision: The Cans, the Cannots, and a Little Bit of Deep Learning” (Zhang et al 2017)
Low-precision formats in general

• These are some of the **most common formats used in ML**
 • …but we’re not limited to using only these formats!

• There are **many other things we could try**
 • For example, floating point numbers with different exponent/mantissa sizes
 • Block floating point numbers with different block sizes/layouts
 • Fixed point numbers with nonstandard widths

• Problem: there’s **no hardware support** for these other things yet, so it’s hard to get a sense of how they would perform.
Low-Precision SGD

Using low-precision arithmetic for training
How is precision used for training

• Recall our training diagram
 • Each of these signals forms a class of numbers
 • Generally, we assign a precision to each of the classes, and different classes can have different precisions

Number classes extended from “Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent,” ISCA 2017:

• Dataset numbers
• Model/weight numbers
• Gradient numbers
• Communication numbers
• Activation numbers
• Backward pass numbers
• Weight accumulator
Quantize classes independently

• Using low-precision for different number classes has different effects on throughput.
 • Quantizing the dataset numbers improves memory capacity and overall training example throughput

• Quantizing the model numbers improves cache capacity and saves on compute

• Quantizing the gradient numbers saves compute

• Quantizing the communication numbers saves on expensive inter-worker memory bandwidth
Quantize classes independently

• Using low-precision for different number classes has different effects on statistical efficiency and accuracy.
 • Quantizing the dataset numbers means you’re solving a different problem

• Quantizing the model numbers adds noise to each gradient step, and often means you can’t exactly represent the solution

• Quantizing the gradient numbers can add errors to each gradient step

• Quantizing the communication numbers can add errors which cause workers’ local models to diverge, which slows down convergence
Theoretical Guarantees for Low Precision

• Reducing precision adds noise in the form of round-off error.

• Two approaches to rounding:
 • **biased rounding** – round to nearest number
 • **unbiased rounding** – round randomly: $E[Q(x)] = x$

Using this, we can prove **guarantees** that SGD works with a low precision model.

Taming the Wild [NIPS 2015]
Why unbiased rounding?

• Imagine running SGD with a low-precision model with update rule

\[w_{t+1} = \tilde{Q} \left(w_t - \alpha_t \nabla f(w_t; x_t, y_t) \right) \]

• Here, \(Q \) is an unbiased quantization function

• In expectation, this is just gradient descent

\[
\mathbb{E}[w_{t+1}|w_t] = \mathbb{E} \left[\tilde{Q} \left(w_t - \alpha_t \nabla f(w_t; x_t, y_t) \right) \right] \\
= \mathbb{E} \left[w_t - \alpha_t \nabla f(w_t; x_t, y_t) \right] \\
= w_t - \alpha_t \nabla f(w)
\]
Implementing unbiased rounding

• To implement an unbiased to-integer quantizer:

 sample \(u \sim \text{Unif}[0, 1] \), then set \(Q(x) = \lfloor x + u \rfloor \)

• Why is this unbiased?

\[
\mathbb{E}[Q(x)] = \lfloor x \rfloor \cdot \mathbb{P}(Q(x) = \lfloor x \rfloor) + (\lfloor x \rfloor + 1) \cdot \mathbb{P}(Q(x) = \lfloor x \rfloor + 1)
\]

\[
= \lfloor x \rfloor + \mathbb{P}(Q(x) = \lfloor x \rfloor + 1) = \lfloor x \rfloor + \mathbb{P}(\lfloor x + u \rfloor = \lfloor x \rfloor + 1)
\]

\[
= \lfloor x \rfloor + \mathbb{P}(x + u \geq \lfloor x \rfloor + 1) = \lfloor x \rfloor + \mathbb{P}(u \geq \lfloor x \rfloor + 1 - x)
\]

\[
= \lfloor x \rfloor + 1 + (\lfloor x \rfloor + 1 - x) = x.
\]
Doing unbiased rounding efficiently

• We still need an efficient way to do unbiased rounding

• **Pseudorandom number generation can be expensive**
 • E.G. doing C++ rand or using Mersenne twister takes many clock cycles

• Empirically, we can use **very cheap** pseudorandom number generators
 • And still get good statistical results
 • For example, we can use XORSHIFT which is just a cyclic permutation
Benefits of Low-Precision Computation

Drawbacks of low-precision

• The drawback of low-precision arithmetic is the low precision!

• Low-precision computation means we accumulate more rounding error in our computations

• These rounding errors can add up throughout the learning process, resulting in less accurate learned systems

• The trade-off of low-precision: throughput/memory vs. accuracy
Example: Low-Precision Neural Net

(b) Test accuracies of low-precision SGD on LeNet neural network after 5000 passes, for various datasets.
Demo
Memory Locality and Scan Order
Memory Locality: Two Kinds

• Memory locality is needed for good cache performance

• **Temporal locality**
 • Frequency of reuse of the same data within a short time window

• **Spatial locality**
 • Frequency of use of data nearby data that has recently been used

• **Where is there locality in stochastic gradient descent?**
Problem: no dataset locality across iterations

• The training example at each iteration is chosen randomly
 • Called a random scan order
 • Impossible for the cache to predict what data will be needed

\[w_{t+1} = w_t - \alpha_t \nabla f(w_t; x_t, y_t) \]

• Idea: process examples in the order in which they are stored in memory
 • Called a systematic scan order or sequential scan order
 • Does this improve the memory locality?
Random scan order vs. sequential scan order

- Much easier to prove theoretical results for random scan

- But sequential scan has better systems performance

- In practice, almost everyone uses sequential scan
 - There’s no empirical evidence that it’s statistically worse in most cases
 - Even though we can construct cases where using sequential scan does harm the convergence rate
Other scan orders

- **Shuffle-once**, then sequential scan
 - Shuffle the data once, then systematically scan for the rest of execution
 - Statistically very similar to random scan at the state

- **Random reshuffling**
 - Randomly shuffle on every pass through the data
 - Believed to be always at least as good as both random scan and sequential scan
 - But no proof that it is better
Demo
Questions?

• Upcoming things
 • Paper Review #8 — due today
 • Paper Presentation #9 on Wednesday