Online vs. Offline Learning, Variance Reduction, and SVRG
Recall from Lecture 2

• Gradient descent
 • Computationally slow to run
 • Statistically converges at a linear rate

\[E \left[\| x_t - x^* \|^2 \right] = O(\gamma^t) \]

• Stochastic gradient descent (SGD)
 • Computationally fast iterations, no dependence on dataset size
 • Statistically converges at a slower rate — or to a noise ball

\[E \left[\| x_t - x^* \|^2 \right] = O(1/t) \]
Can We Do Better?

• Is there an algorithm that has the **computational structure of SGD**, but still gets the **fast linear rates of gradient descent**?

• Intermediate question: can we find problems for which vanilla SGD already converges at a linear rate, rather than converging to a noise ball?
 • If we find such a problem, we can **understand why it happens**.
Rank-1 Matrix Completion

• Suppose you have some **rank-1 matrix** $A = xx^T$

• Carelessly, **you lost most of the entries** of A
 • You only have access to a sparse, randomly-chosen subset of the entries

• Goal: **recover the original matrix** A from the sparse samples.
 • Applications include recommender systems, principle component analysis, etc.
Matrix Completion as Optimization

• Simplest thing: minimize squared error between model and samples.

$$\text{minimize}_x \sum_{(i,j) \in \text{samples}} (e_i^T xx^T e_j - e_i^T A e_j)^2$$

• Is this convex?

• We can try to solve this with SGD: randomly choose \((i, j)\) and run

$$x_{t+1} = x_t - 2\alpha(e_i^T xx^T e_j - e_i^T A e_j)(e_i e_j^T x + e_j e_i^T x)$$
Aside: What is the cost of SGD here?

• Update rule is

\[x_{t+1} = x_t - 2\alpha(e_i^T xx^T e_j - e_i^T Ae_j)(e_i e_j^T x + e_j e_i^T x) \]

• Suppose we have \(K \) samples and \(x \in \mathbb{R}^n \).

• What is the **time complexity** of computing an iteration of SGD?

• It’s really fast: \(O(1) \) — this makes SGD very attractive here
Demo
A Linear Rate for SGD? Why?

• Variance of the gradient estimator goes to zero over time.

• What is the variance at a particular point x?

\[
\mathbb{E}\left[\left\| \nabla f(x) \right\|^2\right] = \frac{4}{K} \sum_{(i,j)\in\text{samples}} \left\| (e_i^T x x^T e_j - e_i^T A e_j)(e_i e_j^T x + e_j e_i^T x) \right\|^2
\]

\[
= \frac{4}{K} \sum_{(i,j)\in\text{samples}} (e_i^T x x^T e_j - e_i^T A e_j)^2((e_j^T x)^2 + (e_i^T x)^2)
\]

• At an optimal point, $xx^T = A$, the variance is zero!
The Role of Variance

• Hypothesis: if the variance becomes small when we get close to the optimum, we converge at a linear rate.

• In fact, we can prove that we get a linear rate if for some C

$$\text{Var} \left(\nabla \tilde{f}(x) \right) \leq C \| x - x^* \|^2$$

• Or more generally

$$\mathbb{E} \left[\| \nabla \tilde{f}(x) \|^2 \right] \leq C \| \mathbb{E} \left[\nabla \tilde{f}(x) \right] \|^2 = C \| \nabla f(x) \|^2$$
Can we make this happen for any objective?

• One way to do it:

\[\nabla \tilde{g}(x) = \nabla \tilde{f}(x) - \nabla \tilde{f}(x^*) \]

• In expectation, this is the same since

\[\mathbb{E} [\nabla \tilde{g}(x)] = \nabla f(x) - \nabla f(x^*) = \nabla f(x) - 0 \]

• And if the samples are Lipschitz continuous with parameter L,

\[\|\nabla \tilde{g}(x)\|^2 = \|\nabla f(x) - \nabla f(x^*)\|^2 \leq L^2 \|x - x^*\|^2 \]
Does this mean we can always get a linear rate?

• **Yes!** ...for any strongly convex problem where we know the solution.

• Doesn’t seem very useful.

• What if we can approximate the solution? For \(\hat{x} \approx x^* \)

\[
\nabla \tilde{g}(x) = \nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x})
\]

• But now our gradients are biased — SGD converges to \(\hat{x} \) not \(x^* \)
Unbiased gradients with approximate solutions

- We can force the gradient to be unbiased by letting

\[
\nabla \tilde{g}(x) = \nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x}) + \mathbb{E} \left[\nabla \tilde{f}(\hat{x}) \right]
\]

- Using a **full gradient as an anchor** to lower the variance

- But what is the **computational cost** of doing this?
 - Is it feasible to compute the full gradient in every setting?
 - Is it worth it to get a linear rate?
Online and Offline Learning
Two Types of Settings for ML Problems

• **Online learning**
 • The training examples arrive one-at-a-time as we are learning
 • We don’t have access to all the training examples
 • Not even necessarily a finite training set — new training examples may be generated in real time in response to e.g. changes in the environment

• **Offline learning**
 • We have access to all the training examples upfront
 • The objective is a finite sum over the given training set
Online Learning

• Have some **distribution of training examples**, and goal is to minimize

\[\min_w \mathbb{E}_{\tilde{x} \sim \text{distribution}} [\text{loss}(w; \tilde{x})] \]

• But we **don’t actually have an expression** for the distribution

• All we can do is **draw samples from it**

\[\tilde{x}_1, \tilde{x}_2, \tilde{x}_3, \ldots \]
Advantages of Online Learning

• Online learning *generally doesn’t overfit as much*
 • Why? The training distribution is the same as the test distribution.

• Online learning *easily handles new data* from the environment

• Systems benefit: we don’t need to materialize the entire training set
 • Great for *scaling up* to problems that don’t fit in memory
Disadvantages of Online Learning

• Can’t compute exact/full objectives and gradients
 • Because we don’t even know distribution

• Difficult to evaluate convergence

• Generally don’t reuse training examples multiple times
 • So don’t make efficient use of the cache for the training set

• Neural networks sometimes catastrophically forget older examples.
Limitations on Online Learning

• 1-D least squares regression: for some distribution μ over \mathbb{R},

$$\minimize_{x} \mathbb{E}_{u \sim \mu} \left[\frac{1}{2} (x - u)^2 \right]$$

• Optimal solution is just the mean, regardless of what μ is

$$x^* = \mathbb{E}_{u \sim \mu} [u]$$
Limitations on Online Learning (continued)

• Suppose there were an online learning algorithm that converged at a linear rate for this 1-D least squares problem. Using \(t \) samples:

\[
E \left[(x_t - x^*)^2 \right] = O(\gamma^t)
\]

• But we know (from statistics) the lowest-variance estimator for the mean of a distribution, given \(t \) samples, is just the sample mean

\[
\bar{u} = \frac{1}{t} \sum_{i=1}^{t} u_t \Rightarrow \text{Var} (\bar{u}) = \frac{1}{t} \text{Var} (u_t)
\]

• Contradiction. No online algorithm can be this good!
Limitations on Online Learning (continued)

• Conclusion: there’s no online learning algorithm that converges at a linear rate for general convex problems.

• This doesn’t mean that online SGD never converges at a linear rate
 • We saw that the matrix completion example did

• But it does suggest that if we want to make SGD converge at a linear rate, we need more information than what we have in the online setting.
Aside: Online Learning in Research

• Online learning is an active area of research.

• Just from a search of the titles, there were 5 papers mentioning online learning in this year’s ICML and 23 papers in this year’s NIPS.
 • And a few more if we look at the abstracts.

• Particularly interesting to us because of the computational benefits of being able to run online.
Offline Learning

• **Offline or batch learning** is the more traditional setting of minimizing a finite sum of training losses

\[
\text{minimize}_w \, \frac{1}{n} \sum_{i=1}^{n} l(w; x_i, y_i)
\]

• Offline learning is often just defined as “not online learning”

• We have access to everything:
 • The loss function \(l \)
 • The training examples \(x \)
 • The training labels \(y \)
Benefits of Offline Learning

• **Can compute exact/full objectives and gradients**

• Consequence: it’s trivially possible to **converge at a linear rate**
 • Just use gradient descent

• **Can we leverage this to make an SGD-like algorithm fast?**
Stochastic Variance-Reduced Gradient (SVRG)
Recall: Unbiased low-variance samples

- From a few slides ago, we were looking at using samples of the form
 \[\nabla \tilde{g}(x) = \nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x}) + \mathbb{E} \left[\nabla \tilde{f}(\hat{x}) \right] \]

- These samples have **reduced variance** when \(\hat{x} \) is close to \(x^* \)

- We asked when we could do this, and now we have an answer:
 - Only in the offline setting!

- Question: **how do we use this in an algorithm?**
How much did we reduce the variance?

• If the gradient samples are L-Lipschitz continuous
 • And we abuse notation to define $\text{Var}(u) = \mathbb{E} \left[\|u - \mathbb{E}[u]\|^2 \right]$

\[
\text{Var} \left(\nabla \tilde{g}(x) \right) = \text{Var} \left(\nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x}) + \mathbb{E} \left[\nabla \tilde{f}(\hat{x}) \right] \right) \\
= \text{Var} \left(\nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x}) \right) \\
\leq \mathbb{E} \left[\| \nabla \tilde{f}(x) - \nabla \tilde{f}(\hat{x}) \|^2 \right] \\
\leq L^2 \| x - \hat{x} \|^2.
\]
Is this enough for a linear rate for SGD?

• **No**, variance at the optimum is reduced, but still not zero!

\[\text{Var} \left(\nabla \tilde{g}(x^*) \right) \leq L^2 \| x^* - \hat{x} \|^2. \]

• Idea: what if we used a sequence of \(\hat{x} \) that **approaches the optimum**?

• Then **the variance would go to zero over time!**
 • Intuition: if the variance goes to zero at a linear rate, then SGD should also converge at a linear rate.
Is this enough? (continued)

- If we have a sequence of \hat{x} that converges to the optimum at a linear rate, then we can use it to reduce the variance of SGD so that it converges to the optimum at a linear rate.

- This also doesn’t seem useful.

- Critical insight: use the iterates of SGD as \hat{x}
 - So, if SGD converges at a linear rate, then SGD will converge at a linear rate
 - Seems circular — but we can make it rigorous
How often to use full gradient samples?

• Can we use every iteration of SGD as an anchor point \(\hat{x} \)?

• We could...but this would just be gradient descent.

\[
\nabla \tilde{g}(x) = \nabla \tilde{f}(x) - \nabla \tilde{f}(x) + \mathbb{E} \left[\nabla \tilde{f}(x) \right]
\]

\[
= \nabla f(x).
\]

• Instead, use a full gradient sample every \(K \) iterations of SGD.
 • Called an epoch.
Stochastic Variance-Reduced Gradient (SVRG)

- Initialize $x_{0,T}$ arbitrarily
- Outer loop: for $k = 1$ to K
 - Inner loop: for $t = 1$ to T
 - Sample $f_{k,t}$ at random from training set losses
 - $\hat{x}_k \leftarrow x_{k-1,T}$
 - $\hat{g}_k \leftarrow \nabla f(\hat{x}_k) = \mathbb{E} \left[\nabla \tilde{f}(\hat{x}_k) \right]$
 - $x_{k,0} \leftarrow \hat{x}_k$
 - Sample $f_{k,t}$ at random from training set losses
 - $x_{k,t} \leftarrow x_{k,t-1} - \alpha \left(\nabla f_{k,t}(x_{k,t-1}) - \nabla f_{k,t}(\hat{x}_k) + \hat{g}_k \right)$
Computational Cost of SVRG

• Each inner loop runs for T iterations
 • Has a computational cost of $O(T)$

• If we have n examples, the outer loop gradient computation has a computational cost of $O(n)$

• Over K total outer loop iterations, total time is $O(Kn + KT)$
Memory Burden of SVRG

• In addition to the copy of the model that needs to be stored for vanilla SGD, we also need to store
 • An additional copy of the model vector for the anchor point \hat{x}
 • An additional vector to store its exact/full gradient

• If the model is of size d, we will need to store a total of $3d$ numbers
 • Plus the training set, which is usually much larger

• Takeaway: no significant memory cost to run SVRG
Linear Rates for SVRG
Very Simple Proof that SVRG Converges

• Strategy: run the inner loop of SVRG long enough that for some $\gamma < 1$

$$\mathbb{E} \left[\|x_{k,T} - x^*\|^2 \bigg| x_{k,0} \right] \leq \gamma \|x_{k,0} - x^*\|^2.$$

• Show that a fixed T suffices for every epoch k
 • This is enough to show convergence at a linear rate. Why?

• You’ll see a tighter version of this proof in this week’s paper.
Analysis of an Inner Iterate of SVRG

• Starting with the iterate:

\[x_{k,t} = x_{k,t-1} - \alpha \left(\nabla \tilde{f}_{k,t}(x_{k,t-1}) - \nabla \tilde{f}_{k,t}(\hat{x}_k) + \hat{g}_k \right) \]

• Let’s simplify it a little by abusing notation to drop the \(k \) subscripts

\[x_t = x_{t-1} - \alpha \left(\nabla \tilde{f}_t(x_{t-1}) - \nabla \tilde{f}_t(\hat{x}) + \nabla f(\hat{x}) \right) \]
Analysis (continued)

• Expected distance to the optimum:

\[
E \left[\| x_t - x^* \|^2 \middle| x_{t-1} \right] = E \left[\| x_{t-1} - x^* - \alpha \left(\nabla f_t(x_{t-1}) - \nabla f_t(\hat{x}) + \nabla f(\hat{x}) \right) \|^2 \middle| x_{t-1} \right] \\
= \| x_{t-1} - x^* \|^2 - 2\alpha (x_{t-1} - x^*)^T E \left[\nabla f_t(x_{t-1}) - \nabla f_t(\hat{x}) + \nabla f(\hat{x}) \middle| x_{t-1} \right] \\
+ \alpha^2 E \left[\| \nabla f_t(x_{t-1}) - \nabla f_t(\hat{x}) + \nabla f(\hat{x}) \|^2 \middle| x_{t-1} \right] \\
= \| x_{t-1} - x^* \|^2 - 2\alpha (x_{t-1} - x^*)^T \nabla f(x_{t-1}) + \alpha^2 \| \nabla f(x_{t-1}) \|^2 \\
+ \alpha^2 \text{Var} \left(\nabla f_t(x_{t-1}) - \nabla f_t(\hat{x}) + \nabla f(\hat{x}) \middle| x_{t-1} \right)
\]

• To proceed, need to **bound the second order/variance term**
Analysis (continued)

• Important property: for constant c, $\text{Var} (X + c) = \text{Var} (X)$

• We can use this to simplify the second order term:

$$\text{Var} \left(\nabla \tilde{f}_t(x_{t-1}) - \nabla \tilde{f}_t(\hat{x}) + \nabla f(\hat{x}) \middle| x_{t-1} \right)$$

$$= \text{Var} \left(\nabla \tilde{f}_t(x_{t-1}) - \nabla \tilde{f}_t(\hat{x}) \middle| x_{t-1} \right)$$

$$\leq E \left[\left\| \nabla \tilde{f}_t(x_{t-1}) - \nabla \tilde{f}_t(\hat{x}) \right\|^2 \middle| x_{t-1} \right]$$

$$\leq L^2 \left\| x_{t-1} - \hat{x} \right\|^2 \leq 2L^2 \left\| x_{t-1} - x^* \right\|^2 + 2L^2 \left\| \hat{x} - x^* \right\|^2$$
Analysis (continued)

• Substituting this back, we get

\[
E \left[\| x_t - x^* \|^2 \middle| x_{t-1} \right] \leq \| x_{t-1} - x^* \|^2 - 2\alpha (x_{t-1} - x^*)^T \nabla f(x_{t-1}) + \alpha^2 \| \nabla f(x_{t-1}) \|^2 \\
+ \alpha^2 \left(2L^2 \| x_{t-1} - x^* \|^2 + 2L^2 \| \hat{x} - x^* \|^2 \right)
\]

• Now we can reduce the first part using strong convexity/Lipschitz

\[
E \left[\| x_t - x^* \|^2 \middle| x_{t-1} \right] \leq \| x_{t-1} - x^* \|^2 - 2\alpha \mu \| x_{t-1} - x^* \|^2 + \alpha^2 L^2 \| x_{t-1} - x^* \|^2 \\
+ \alpha^2 \left(2L^2 \| x_{t-1} - x^* \|^2 + 2L^2 \| \hat{x} - x^* \|^2 \right)
\]
Analysis (continued)

• We can now take the full expectation, given the anchor point

\[
\mathbb{E} \left[\| x_t - x^* \|^2 \bigg| \hat{x} \right] \leq (1 - 2\alpha \mu + 3\alpha^2 L^2) \mathbb{E} \left[\| x_{t-1} - x^* \|^2 \bigg| \hat{x} \right] + 2\alpha^2 L^2 \| \hat{x} - x^* \|^2
\]

• Next, for simplicity, let \(\rho_t = \mathbb{E} \left[\| x_t - x^* \|^2 \bigg| \hat{x} \right] \)

\[
\rho_t \leq (1 - 2\alpha \mu + 3\alpha^2 L^2) \rho_{t-1} + 2\alpha^2 L^2 \rho_0
\]

• Suppose we want to contract by a factor of \(e \). As long as \(e \rho_{t-1} > \rho_0 \):

\[
\rho_t \leq (1 - 2\alpha \mu + 3\alpha^2 L^2) \rho_{t-1} + 2\alpha^2 L^2 e \rho_{t-1}
\]
• Now we have

\[\rho_t \leq (1 - 2\alpha \mu + 3\alpha^2 L^2) \rho_{t-1} + 2\alpha^2 L^2 e \rho_{t-1} \]

• Setting the step size such that \(\alpha \mu = 5\alpha^2 L^2 e \)

\[\rho_t \leq \left(1 - \frac{\mu^2}{5L^2 e}\right) \rho_{t-1} \Rightarrow \rho_t \leq \left(1 - \frac{\mu^2}{5L^2 e}\right)^t \rho_0 \leq \exp \left(-\frac{\mu^2}{5L^2 e} t\right)^t \rho_0 \]
Analysis (continued)

• Now, this was all contingent upon \(e \mathbf{p}_{t-1} > \mathbf{p}_0 \).

• **How many iterations** do we need to get there?
 - Need \(t \) such that
 \[
 \exp \left(-\frac{\mu^2}{5L^2e} t \right) \leq \frac{1}{e}
 \]
 - It suffices to pick any
 \[
 t \geq \frac{5L^2e}{\mu^2}
 \]
Analysis of Inner Loop Is Done!

• We’ve shown that if we run for $t \geq \frac{5L^2e}{\mu^2}$ iterations,

$$
E \left[\| x_t - x^* \|^2 \middle| \hat{x} \right] \leq \frac{1}{e} \| \hat{x} - x^* \|^2
$$

• In particular, this means that across outer loop iterations,

$$
E \left[\| \hat{x}_{k+1} - x^* \|^2 \right] \leq \frac{1}{e} E \left[\| \hat{x}_k - x^* \|^2 \right]
$$
Outer Loop Analysis

• Applying this recursively,

\[
E \left[\| \hat{x}_k - x^* \|^2 \right] \leq e^{-k} \| \hat{x}_0 - x^* \|^2
\]

• So, to get down to error \(\varepsilon \) we need \(k \) iterations, where

\[
k \geq \log \left(\frac{\| \hat{x}_0 - x^* \|^2}{\varepsilon} \right)
\]
Bringing it Together

• Total number of stochastic gradient iterations needed is

\[tk \geq \frac{5L^2e}{\mu^2} \log \left(\frac{\|\hat{x}_0 - x^*\|^2}{\epsilon} \right) = O \left(\log \left(\frac{1}{\epsilon} \right) \right) \]

• This is a linear rate!
 • Although there’s a much tighter proof in the paper this week with better dependence on the condition number.
Demo
Issues with Variance Reduction

• Computational cost

• Overfitting

• Interaction with other techniques

• Choosing parameters
 • Metaparameter optimization
Other Methods for Variance Reduction
SAG

- Stochastic average gradient

- At each step, randomly update a single example’s gradient estimate using the current iterate, like SGD

- But, use the sum of all gradient estimates to perform an update
Systems Comparison: SAG vs SVRG

• SAG requires us to store a gradient sample for each training example.

• What is the memory cost of doing this, if we have \(n \) training examples and our model has dimension \(d \)?

• Answer: it’s \(O(nd) \)

• Compare to SVRG which required \(O(3d) \)
Many other variance reduction methods

- SAG
- SAGA
- SVRG
- SDCA – stochastic dual coordinate ascent
- Etc.
Questions?

• Upcoming things
 • Paper Presentation #4 on Wednesday — read paper before class
 • Paper Review #3 due Today.