The Kernel Trick, Gram Matrices, and Feature Extraction
Basic Linear Models

• For two-class classification using model vector \mathbf{w}

$$\text{output} = \text{sign}(\mathbf{w}^T \mathbf{x})$$

• What is the compute cost of making a prediction in a d-dimensional linear model, given an example \mathbf{x}?

• Answer: d multiplies and d adds
 • To do the dot product.
Optimizing Basic Linear Models

• For classification using model vector w

 \[
 \text{output} = \text{sign}(w^T x)
 \]

• Optimization methods for this task vary; here’s logistic regression

 \[
 \text{minimize}_w \frac{1}{n} \sum_{i=1}^n \log (1 + \exp(-w^T x_i y_i))
 \]

 \[\quad (y_i \in \{-1, 1\})\]
SGD on Logistic Regression

• Gradient of a training example is

\[\nabla f_i(w) = \frac{-x_i y_i}{1 + \exp(w^T x_i y_i)} \]

• So SGD update step is

\[w_{t+1} = w_t + \alpha_t \frac{x_i y_i}{1 + \exp(w^T x_i y_i)} \]
What is the compute cost of an SGD update?

• For logistic regression on a d-dimensional model

$$w_{t+1} = w_t + \alpha_t \frac{x_i y_i}{1 + \exp(w_t^T x_i y_i)}$$

• Answer: 2d multiples and 2d adds + $O(1)$ extra ops
 • d multiplies and d adds to do the dot product
 • d multiplies and d adds to do the AXPY operation
 • $O(1)$ additional ops for computing the exp, divide, etc.
Benefits of Linear Models

• **Fast classification**: just one dot product

• **Fast training/learning**: just a few basic linear algebra operations

• **Drawback: limited expressivity**
 • Can only capture linear classification boundaries \(\rightarrow\) bad for many problems

• How do we let linear models **represent a broader class of decision boundaries**, while **retaining the systems benefits**?
Review: The Kernel Method

• Idea: in a linear model we can think about the similarity between two training examples x and y as being

$$x^T y$$

• This is related to the rate at which a random classifier will separate x and y

• Kernel methods replace this dot-product similarity with an arbitrary Kernel function that computes the similarity between x and y

$$K(x, y) : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$$
Kernel Properties

• What properties do kernels need to have to be useful for learning?

• Key property: kernel must be symmetric \(K(x, y) = K(y, x) \)

• Key property: kernel must be positive semi-definite

\[
\forall c_i \in \mathbb{R}, x_i \in \mathcal{X}, \sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j K(x_i, x_j) \geq 0
\]

• Can check that the dot product has this property
Facts about Positive Semidefinite Kernels

- Sum of two PSD kernels is a PSD kernel

 \[K(x, y) = K_1(x, y) + K_2(x, y) \] is a PSD kernel

- Product of two PSD kernels is a PSD kernel

 \[K(x, y) = K_1(x, y)K_2(x, y) \] is a PSD kernel

- Scaling by any function on both sides is a kernel

 \[K(x, y) = f(x)K_1(x, y)f(y) \] is a PSD kernel
Other Kernel Properties

- Useful property: kernels are often non-negative

\[K(x, y) \geq 0 \]

- Useful property: kernels are often scaled such that

\[K(x, y) \leq 1, \text{ and } K(x, y) = 1 \iff x = y \]

- These properties capture the idea that the kernel is expressing the similarity between \(x \) and \(y \)
Common Kernels

• **Gaussian kernel/RBF kernel**: de-facto kernel in machine learning

\[K(x, y) = \exp \left(-\gamma \|x - y\|^2 \right) \]

• We can validate that this is a kernel
 • Symmetric?
 • Positive semi-definite? **WHY?**
 • Non-negative?
 • Scaled so that \(K(x, x) = 1 \)?
Common Kernels (continued)

- **Linear kernel:** just the inner product \(K(x, y) = x^T y \)

- **Polynomial kernel:** \(K(x, y) = (1 + x^T y)^p \)

- **Laplacian kernel:** \(K(x, y) = \exp(-\beta \|x - y\|_1) \)

- Last layer of a neural network:

 if last layer outputs \(\phi(x) \), then kernel is \(K(x, y) = \phi(x)^T \phi(y) \)
Kernels as a feature mapping

• More generally, any function that can be written in the form

\[K(x, y) = \phi(x)^T \phi(y) \]

(where \(\phi : \mathbb{R}^d \rightarrow \mathbb{R}^D \) is called a feature map) is a kernel.

• Even works for maps onto infinite dimensional **Hilbert space**
 • And in this case the converse is also true: any kernel has an associated (possibly infinite-dimensional) feature map.
Classifying with Kernels

• An equivalent way of writing a linear model on a training set is

\[
\text{output}(x) = \text{sign} \left(\left(\sum_{i=1}^{n} w_i x_i \right)^T x \right)
\]

• We can kernel-ize this by replacing the dot products with kernel evals

\[
\text{output}(x) = \text{sign} \left(\sum_{i=1}^{n} w_i K(x_i, x) \right)
\]
Learning with Kernels

• An equivalent way of writing linear-model logistic regression is

\[
\text{minimize}_w \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp \left(- \left(\sum_{j=1}^{n} w_j x_j \right)^T x_i y_i \right) \right)
\]

• We can kernel-ize this by replacing the dot products with kernel evals

\[
\text{minimize}_w \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp \left(- \sum_{j=1}^{n} w_j y_i K(x_j, x_i) \right) \right)
\]
The Computational Cost of Kernels

• Recall: benefit of learning with kernels is that **we can express a wider class of classification functions**

• Recall: another benefit is **linear classifier learning problems are “easy” to solve** because they are convex, and gradients easy to compute

• **Major cost of learning naively with Kernels**: have to evaluate $K(x, y)$
 • For SGD, need to do this effectively n times per update
 • Computationally intractable unless K is very simple
The Gram Matrix

• Address this computational problem by **pre-computing the kernel function** for all pairs of training examples in the dataset.

\[G_{i,j} = K(x_i, x_j) \]

• Transforms the logistic regression learning problem into

\[
\text{minimize}_w \frac{1}{n} \sum_{i=1}^{n} \log (1 + \exp (-y_i e_i^T G w))
\]

• This is much easier than re-computing the kernel at each iteration
Problems with the Gram Matrix

• Suppose we have n examples in our training set.

• **How much memory** is required to store the Gram matrix G?

• **What is the cost** of taking the product $G_i w$ to compute a gradient?

• What happens if we have **one hundred million training examples**?
Feature Extraction

• Simple case: let’s imagine that \(X \) is a finite set \(\{1, 2, \ldots, k\} \)

• We can define our kernel as a matrix \(M \in \mathbb{R}^{k \times k} \)

\[
M_{i,j} = K(i, j)
\]

• Since \(M \) is positive semidefinite, it has a square root \(U^T U = M \)

\[
\sum_{i=1}^{k} U_{k,i} U_{k,j} = M_{i,j} = K(i, j)
\]
Feature Extraction (continued)

• So if we define a **feature mapping** $\phi(i) = U e_i$ then

$$\phi(i)^T \phi(j) = \sum_{i=1}^{k} U_{k,i} U_{k,j} = M_{i,j} = K(i, j)$$

• The kernel is **equivalent to a dot product** in some space

• As we noted above, this is **true for all kernels**, not just finite ones
 • Just with a possibly infinite-dimensional feature map
Classifying with feature maps

• Suppose that we can find a finite-dimensional feature map that satisfies

$$\phi(i)^T \phi(j) = K(i, j)$$

• Then we can simplify our classifier to

$$\text{output}(x) = \text{sign} \left(\sum_{i=1}^{n} w_i K(x_i, x) \right)$$

$$= \text{sign} \left(\sum_{i=1}^{n} w_i \phi(x_i)^T \phi(x) \right) = \text{sign} \left(u^T \phi(x) \right)$$
Learning with feature maps

• Similarly we can simplify our learning objective to

\[
\text{minimize}_u \frac{1}{n} \sum_{i=1}^{n} \log (1 + \exp (-u^T \phi(x_i)y_i))
\]

• Take-away: this is just **transforming the input data, then running a linear classifier in the transformed space**!

• Computationally: **super efficient**
 • As long as we can transform and store the input data in an efficient way
Problems with feature maps

• The dimension of the transformed data may be much larger than the dimension of the original data.

• Suppose that the feature map is $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^D$ and there are n examples

• How much memory is needed to store the transformed features?

• What is the cost of taking the product $u^T \phi(x_i)$ to compute a gradient?
Feature maps vs. Gram matrices

• Systems trade-offs exist here.

• When number of examples gets very large, feature maps are better.

• When transformed feature vectors have high dimensionality, Gram matrices are better.
Another Problem with Feature Maps

• Recall: I said there was always a feature map for any kernel such that
 \[\phi(i)^T \phi(j) = K(i, j) \]

• But this feature map is not always finite-dimensional
 • For example, the Gaussian/RBF kernel has an infinite-dimensional feature map
 • Many kernels we care about in ML have this property

• What do we do if \(\phi \) has infinite dimensions?
 • We can’t just compute with it normally!
Solution: Approximate feature maps

• Find a finite-dimensional feature map so that

\[K(x, y) \approx \phi(x)^T \phi(y) \]

• Typically, we want to find a family of feature maps \(\phi_t \) such that

\[
\phi_D : \mathbb{R}^d \rightarrow \mathbb{R}^D
\]

\[
\lim_{D \rightarrow \infty} \phi_D(x)^T \phi_D(y) = K(x, y)
\]
Types of approximate feature maps

• **Deterministic feature maps**
 - Choose a fixed-a-priori method of approximating the kernel
 - Generally not very popular because of the way they scale with dimensions

• **Random feature maps**
 - Choose a feature map at random (typically each feature is independent) such that
 \[
 \mathbb{E} \left[\phi(x)^T \phi(y) \right] = K(x, y)
 \]
 - Then prove with high probability that over some region of interest
 \[
 \left| \phi(x)^T \phi(y) - K(x, y) \right| \leq \epsilon
 \]
Types of Approximate Features (continued)

• **Orthogonal randomized feature maps**
 • Intuition behind this: if we have a feature map where for some i and j

$$e_i^T \phi(x) \approx e_j^T \phi(x)$$

then we can’t actually learn much from having both features.
 • Strategy: choose the feature map at random, but subject to the constraint that the features be “orthogonal” in some way.

• **Quasi-random feature maps**
 • Generate features using a low-discrepancy sequence rather than true randomness
Adaptive Feature Maps

• Everything before this didn’t take the data into account

• **Adaptive feature maps** look at the actual training set and try to minimize the kernel approximation error using the training set as a guide
 • For example: we can do a random feature map, and then fine-tune the randomness to minimize the empirical error over the training set
 • Gaining in popularity

• Also, neural networks can be thought of as adaptive feature maps.
Systems Tradeoffs

• Lots of tradeoffs here

• Do we spend more work up-front constructing a more sophisticated approximation, to save work on learning algorithms?

• Would we rather scale with the data, or scale to more complicated problems?

• Another task for hyperparameter optimization
Demo
Dimensionality reduction
Linear models are linear in the dimension

• But what if the dimension d is very large?
 • Example: if we have a high-dimensional kernel map

• It can be **difficult to run SGD** when the dimension is very high even if the cost is linear
 • This happens for other learning algorithms too
Idea: reduce the dimension

• If high dimension is the problem, can we just reduce d?

• This is the problem of **dimensionality reduction**.

• Dimensionality reduction benefits both statistics and systems
 • Statistical side: can **help with generalization** by identifying important subset of features
 • Systems side: lowers compute cost
Techniques for dimensionality reduction

• **Feature selection by hand**
 • Simple method
 • But costly in terms of human effort

• **Principal component analysis (PCA)**
 • Identify the directions of highest variance in the dataset
 • Then project onto those directions
 • Many variants: e.g. kernel PCA
More techniques for dimensionality reduction

• **Locality-sensitive hashing** (LSH)
 • Hash input items into buckets so close-by elements map into the same buckets with high probability
 • Many methods of doing this too

• **Johnson-Lindenstrauss transform** (random projection)
 • General method for reducing dimensionality of any dataset
 • Just choose a random subspace and project onto that subspace
Johnson-Lindenstrauss lemma

Given a desired error $\epsilon \in (0, 1)$, a set of m points in \mathbb{R}^d, and a reduced dimension D that satisfies $D > \frac{8 \log(m)}{\epsilon^2}$, there exists a linear map T such that

$$(1 - \epsilon) \cdot \|x - y\|^2 \leq \|T(x) - T(y)\|^2 \leq (1 + \epsilon) \cdot \|x - y\|^2$$

for all points x and y in the set.
Consequences of J-L transform

• We only need $O(\log(m) / \varepsilon^2)$ dimensions to map a dataset of size m with relative distance accuracy.
 • No matter what the size of the input dataset was!

• This is a very useful result for many applications
 • Provides a generic way of reducing the dimension with guarantees

• But there are more specialized data-dependent ways of doing dimensionality reduction that can work better.
Questions

• Upcoming things:
 • **Paper 2a or 2b review due tonight**
 • Paper 3 in class on Wednesday
 • Start thinking about the class project
 • It will come faster than you think!