Acceleration and Momentum

CS6787 Lecture 3 — Fall 2018
First, some announcements

• Presentation length **reduced to 15–20 mins**
 • To make more time for discussion
 • Please prepare for 15 minutes, to allow time for questions

• This week’s reviews extended to be **due on Wednesday**.
 • Since we left off discussion until today
 • Two late days available as usual
Parameters for paper reviews

• Paper reviews should be about one page (single-spaced) in length.

• The review should roughly mirror what an actual conference review would look like
 • Although you don’t need to assign scores or anything like that

• In particular you should at least:
 1. Summarize the paper
 2. Discuss the paper’s strengths and weaknesses
 3. Discuss the paper’s impact
Paper 1b Discussion
How does the step size affect convergence?

• Let’s go back to gradient descent

\[x_{t+1} = x_t - \alpha \nabla f(x_t) \]

• Simplest possible case: a quadratic function

\[f(x) = \frac{1}{2} x^2 \]

\[x_{t+1} = x_t - \alpha x_t = (1 - \alpha) x_t \]
Step size vs. convergence: graphically

\[|x_{t+1} - 0| = |1 - \alpha| |x_t - 0|\]
What if the curvature is different?

\[f(x) = 2x^2 \quad x_{t+1} = x_t - 4\alpha x_t = (1 - 4\alpha)x_t \]
Step size vs. curvature

• For these one-dimensional quadratics, how we should set the step size depends on the curvature
 • More curvature \Rightarrow smaller ideal step size

• What about higher-dimensional problems?
 • Let’s look at a really simple quadratic that’s just a sum of our examples.

$$f(x, y) = \frac{1}{2}x^2 + 2y^2$$
Simple two dimensional problem

\[f(x, y) = \frac{1}{2}x^2 + 2y^2 \]

- Gradient descent:

\[
\begin{bmatrix}
 x_{t+1} \\
 y_{t+1}
\end{bmatrix} = \begin{bmatrix}
 x_t \\
 y_t
\end{bmatrix} - \alpha \begin{bmatrix}
 x_t \\
 4y_t
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 1 - \alpha & 0 \\
 0 & 1 - 4\alpha
\end{bmatrix} \begin{bmatrix}
 x_t \\
 y_t
\end{bmatrix}
\]
What’s the convergence rate?

• Look at the worst-case contraction factor of the update

\[
\max_{x,y} \frac{\| \begin{bmatrix} 1 - \alpha & 0 \\ 0 & 1 - 4\alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \|}{\| \begin{bmatrix} x \\ y \end{bmatrix} \|} = \max(|1 - \alpha|, |1 - 4\alpha|)
\]

• Contraction is maximum of previous two values.
Convergence of two-dimensional quadratic
What does this example show?

• We’d like to set the step size larger for dimension with less curvature, and smaller for the dimension with more curvature.

• But we can’t, because there is only a single step-size parameter.

• There’s a trade-off
 • Optimal convergence rate is substantially worse than what we’d get in each scenario individually — individually we converge in one iteration.
For general quadratics

• For PSD symmetric A,
 \[f(x) = \frac{1}{2} x^T Ax \]

• Gradient descent has update step
 \[x_{t+1} = x_t - \alpha Ax_t = (I - \alpha A)x_t \]

• What does the convergence rate look like in general?
Convergence rate for general quadratics

\[
\max_x \frac{\| (I - \alpha A)x \|}{\| x \|} = \max_x \frac{1}{\| x \|} \left\| \left(I - \alpha \sum_{i=1}^{n} \lambda_i u_i u_i^T \right) x \right\|
\]

\[
= \max_x \frac{\left\| \sum_{i=1}^{n} (1 - \alpha \lambda_i) u_i u_i^T x \right\|}{\left\| \sum_{i=1}^{n} u_i u_i^T x \right\|}
\]

\[
= \max \left| 1 - \alpha \lambda_i \right|
\]

\[
= \max \left(1 - \alpha \lambda_{\min}, \alpha \lambda_{\max} - 1 \right)
\]
Optimal convergence rate

• Minimize:
 \[\max(1 - \alpha \lambda_{\min}, \alpha \lambda_{\max} - 1) \]

• Optimal value occurs when
 \[1 - \alpha \lambda_{\min} = \alpha \lambda_{\max} - 1 \Rightarrow \alpha = \frac{2}{\lambda_{\max} + \lambda_{\min}} \]

• Optimal rate is
 \[\max(1 - \alpha \lambda_{\min}, \alpha \lambda_{\max} - 1) = \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} \]
What affects this optimal rate?

\[
\text{rate} = \frac{\lambda_{\text{max}} - \lambda_{\text{min}}}{\lambda_{\text{max}} + \lambda_{\text{min}}} = \frac{\lambda_{\text{max}}/\lambda_{\text{min}} - 1}{\lambda_{\text{max}}/\lambda_{\text{min}} + 1} = \frac{\kappa - 1}{\kappa + 1}.
\]

• Here, \(\kappa \) is called the \textbf{condition number} of the matrix \(A \).

\[
\kappa = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}
\]

• Problems with larger condition numbers converge slower.
 • Called \textbf{poorly conditioned}.
Poorly conditioned problems

• Intuitively, these are problems that are \textbf{highly curved in some directions but flat in others}

• Happens pretty often in machine learning
 • Measure something unrelated \rightarrow low curvature in that direction
 • Also affects stochastic gradient descent

• \textbf{How do we deal with this?}
Momentum
Motivation

• Can we tell the difference between the curved and flat directions using information that is already available to the algorithm?

• Idea: in the one-dimensional case, if the gradients are reversing sign, then the step size is too large
 • Because we’re over-shooting the optimum
 • And if the gradients stay in the same direction, then step size is too small

• Can we leverage this to make steps smaller when gradients reverse sign and larger when gradients are consistently in the same direction?
Polyak Momentum

• Add extra momentum term to gradient descent

\[x_{t+1} = x_t - \alpha \nabla f(x_t) + \beta (x_t - x_{t-1}) \]

• Intuition: if current gradient step is in same direction as previous step, then move a little further in that direction.
 • And if it’s in the opposite direction, move less far.

• Also known as the heavy ball method.
Momentum for 1D Quadratics

\[f(x) = \frac{\lambda}{2} x^2 \]

- Momentum gradient descent gives

\[x_{t+1} = x_t - \alpha \lambda x_t + \beta (x_t - x_{t-1}) \]
\[= (1 + \beta - \alpha \lambda)x_t - \beta x_{t-1} \]
Characterizing momentum for 1D quadratics

- Start with \(x_{t+1} = (1 + \beta - \alpha \lambda) x_t - \beta x_{t-1} \)

- Trick: let \(x_t = \beta^{t/2} z_t \)

\[
\beta^{(t+1)/2} z_{t+1} = (1 + \beta - \alpha \lambda) \beta^{t/2} z_t - \beta \cdot \beta^{(t-1)/2} z_{t-1}
\]

\[
z_{t+1} = \frac{1 + \beta - \alpha \lambda}{\sqrt{\beta}} z_t - z_{t-1}
\]
Characterizing momentum (continued)

• Let

\[u = \frac{1 + \beta - \alpha \lambda}{2\sqrt{\beta}} \]

• Then we get the simplified characterization

\[z_{t+1} = 2uz_t - z_{t-1} \]

• This is a degree-\(t\) polynomial in \(u\)
Chebyshev Polynomials

• If we initialize such that \(z_0 = 1, z_1 = u \) then these are a special family of polynomials called the Chebyshev polynomials

\[
z_{t+1} = 2uz_t - z_{t-1}
\]

• Standard notation:

\[
T_{t+1}(u) = 2uT_t(u) - T_{t-1}(u)
\]

• These polynomials have an important property: for all \(t \)

\[
-1 \leq u \leq 1 \Rightarrow -1 \leq z_t \leq 1
\]
Chebyshev Polynomials

\[T_0(u) = 1 \]
Chebyshev Polynomials

$T_1(u) = u$
Chebyshev Polynomials

\[T_2(u) = 2u^2 - 1 \]
Chebyshev Polynomials
Chebyshev Polynomials
Chebyshev Polynomials
Chebyshev Polynomials
Characterizing momentum (continued)

- What does this mean for our 1D quadratics?
 - Recall that we let \(x_t = \beta^{t/2} z_t \)

 \[
 x_t = \beta^{t/2} \cdot x_0 \cdot T_t(u) \\
 = \beta^{t/2} \cdot x_0 \cdot T_t \left(\frac{1 + \beta - \alpha \lambda}{2\sqrt{\beta}} \right)

 - So

 \[-1 \leq \frac{1 + \beta - \alpha \lambda}{2\sqrt{\beta}} \leq 1 \Rightarrow |x_t| \leq \beta^{t/2} |x_0|\]
Consequences of momentum analysis

• Convergence rate depends **only on momentum parameter** β
 • Not on step size or curvature.

• **We don’t need to be that precise in setting the step size**
 • It just needs to be within a window
 • Pointed out in “YellowFin and the Art of Momentum Tuning” by Zhang et. al.

• If we have a multidimensional quadratic problem, the **convergence rate will be the same in all directions**
 • This is different from the gradient descent case where we had a trade-off
Choosing the parameters

• How should we **set the step size and momentum parameter** if we only have bounds on λ?

• Need:
 $$-1 \leq \frac{1 + \beta - \alpha \lambda}{2\sqrt{\beta}} \leq 1$$

• Suffices to have:
 $$-1 = \frac{1 + \beta - \alpha \lambda_{\text{max}}}{2\sqrt{\beta}} \quad \text{and} \quad \frac{1 + \beta - \alpha \lambda_{\text{min}}}{2\sqrt{\beta}} = 1$$
Choosing the parameters (continued)

• Adding both equations:

\[0 = \frac{2 + 2\beta - \alpha \lambda_{\text{max}} - \alpha \lambda_{\text{min}}}{2\sqrt{\beta}} \]

\[0 = 2 + 2\beta - \alpha \lambda_{\text{max}} - \alpha \lambda_{\text{min}} \]

\[\alpha = \frac{2 + 2\beta}{\lambda_{\text{max}} + \lambda_{\text{min}}} \]
Choosing the parameters (continued)

• Subtracting both equations:

\[
\frac{1 + \beta - \alpha \lambda_{\text{min}} - 1 - \beta + \alpha \lambda_{\text{max}}}{2\sqrt{\beta}} = 2
\]

\[
\frac{\alpha(\lambda_{\text{max}} - \lambda_{\text{min}})}{2\sqrt{\beta}} = 2
\]
Choosing the parameters (continued)

• Combining these results:

\[
\alpha = \frac{2 + 2\beta}{\lambda_{\text{max}} + \lambda_{\text{min}}} \quad \frac{\alpha(\lambda_{\text{max}} - \lambda_{\text{min}})}{2\sqrt{\beta}} = 2
\]

\[
\frac{2 + 2\beta}{\lambda_{\text{max}} + \lambda_{\text{min}}} \cdot \frac{(\lambda_{\text{max}} - \lambda_{\text{min}})}{2\sqrt{\beta}} = 2
\]

\[
0 = 1 - 2\sqrt{\beta} \frac{\lambda_{\text{max}} + \lambda_{\text{min}}}{\lambda_{\text{max}} - \lambda_{\text{min}}} + \beta
\]
Choosing the parameters (continued)

- Quadratic formula: \[0 = 1 - 2\sqrt{\beta \frac{\lambda_{\text{max}} + \lambda_{\text{min}}}{\lambda_{\text{max}} - \lambda_{\text{min}}} + \beta} \]

\[
\sqrt{\beta} = \frac{\kappa + 1}{\kappa - 1} - \sqrt{\left(\frac{\kappa + 1}{\kappa - 1}\right)^2 - 1}
\]

\[
= \frac{\kappa + 1}{\kappa - 1} - \sqrt{\frac{4\kappa}{\kappa^2 - 2\kappa + 1}}
\]

\[
= \frac{\kappa + 1}{\kappa - 1} - \frac{2\sqrt{\kappa}}{\kappa - 1} = \frac{(\sqrt{\kappa} - 1)^2}{\kappa - 1} = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}
\]
Gradient Descent versus Momentum

• Recall: gradient descent had a convergence rate of

\[\frac{\kappa - 1}{\kappa + 1} \]

• But with momentum, the optimal rate is

\[\sqrt{\beta} = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \]

• This is called convergence at an accelerated rate
Demo
Setting the parameters

• How do we set the momentum in practice for machine learning?

• One method: hyperparameter optimization

• Another method: just set $\beta = 0.9$
 • Works across a range of problems
 • Actually quite popular in deep learning
Nesterov momentum
What about more general functions?

• Previous analysis was for quadratics

• Does this work for general convex functions?

• Answer: not in general
 • We need to do something slightly different
Nesterov Momentum

• Slightly different rule

\[x_{t+1} = y_t - \alpha \nabla f(y_t) \]
\[y_{t+1} = x_{t+1} + \beta (x_{t+1} - x_t) \]

• Main difference: separate the momentum state from the point that we are calculating the gradient at.
Nesterov Momentum Analysis

• Converges at an accelerated rate for ANY convex problem

\[\sqrt{\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa}}} \]

• Optimal assignment of the parameters:

\[\alpha = \frac{1}{\lambda_{\text{max}}} \quad \beta = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \]
Nesterov Momentum is Also Very Popular

• People use it in practice for deep learning all the time

• Significant speedups in practice
Demo
What about SGD?

• All our above analysis was for gradient descent

• But momentum still produces empirical improvements when used with stochastic gradient descent

• And we’ll see how in one of the papers we’re reading on Wednesday
Questions?

- Upcoming things
 - Paper 1 review due Wednesday
 - Next paper presentation on Wednesday