Simple Techniques for Improving SGD

CS6787 Lecture 2 — Fall 2018
Step Sizes and Convergence
Where we left off

• Stochastic gradient descent (with fixed learning rate)
 \[w_{t+1} = w_t - \alpha \nabla f(w_t; x_{i_t}) \]

• Much faster per iteration than gradient descent
 • Because we don’t have to process the entire training set

• But converges to a noise ball (for strongly convex problems)
 \[\lim_{T \to \infty} \mathbb{E} \left[\| w_T - w^* \|^2 \right] \leq \frac{\alpha M}{2\mu - \alpha \mu^2} \]
Controlling the accuracy

• Want the noise ball to be as small as possible for accurate solutions

• Noise ball proportional to the step size/learning rate

\[
\lim_{T \to \infty} \mathbb{E} \left[\| w_T - w^* \|^2 \right] \leq \frac{\alpha M}{2\mu - \alpha \mu^2} = O(\alpha)
\]

• So should we make the step size as small as possible?
Effect of step size on convergence

• Let’s go back to the convergence rate proof for SGD
 • From the previous lecture, we have

\[
E \left[\| w_{t+1} - w^* \|^2 \right] \leq (1 - \alpha \mu^2) E \left[\| w_t - w^* \|^2 \right] + \alpha^2 M.
\]

• If we’re far from the noise ball i.e. \(E [\| w_t - w^* \|^2] \geq \frac{2\alpha M}{\mu} \)

\[
E \left[\| w_{t+1} - w^* \|^2 \right] \leq (1 - \alpha \mu^2) E \left[\| w_t - w^* \|^2 \right] + \frac{\alpha \mu}{2} E \left[\| w_t - w^* \|^2 \right].
\]
Effect of step size on convergence (continued)

\[E[\|w_{t+1} - w^*\|^2] \leq (1 - \alpha \mu^2) E[\|w_t - w^*\|^2] + \frac{\alpha \mu}{2} E[\|w_t - w^*\|^2] \]

\[\leq \left(1 - \frac{\alpha \mu}{2}\right) E[\|w_t - w^*\|^2] \quad \text{if } \alpha \mu < 1 \]

\[\leq \exp\left(-\frac{\alpha \mu}{2}\right) E[\|w_t - w^*\|^2]. \]

• So to contract by a factor of \(C \), we need to run \(T \) steps, where

\[1 = \exp\left(-\frac{\alpha \mu T}{2}\right) C \iff T = \frac{2}{\alpha \mu} \log C \]
The Full Effect of Step Size

• Noise ball proportional to the step size

$$\lim_{T \to \infty} \mathbb{E} \left[\|w_T - w^*\|^2 \right] \leq \frac{\alpha M}{2\mu - \alpha \mu^2} = O(\alpha)$$

• Convergence time inversely proportional to the step size

$$T = \frac{2}{\alpha \mu} \log C$$

• So there’s a trade-off!
Demo
Can we get the best of both worlds?

• When do we want the step size to be large?
 • At the beginning of execution! Near the end? Both?

• When do we want the step size to be small?
 • At the beginning of execution? Near the end! Both?

• What about using a decreasing step size scheme?
SGD with Varying Step Size

• Allow the step size to vary over time

\[x_{t+1} = x_t - \alpha_t \nabla f(x_t; y_{i_t}) \]

• Turns out this is the standard in basically all machine learning!

• Two ways to do it:
 • Chosen a priori step sizes — step size doesn’t depend on measurements
 • Adaptive step sizes — choose step size based on measurements & heuristics
Optimal Step Sizes for Convex Objectives

• Can we use math to choose a step size?
 • Start with our previous bound

\[
\mathbb{E} \left[\|w_{t+1} - w^*\|^2 \right] \leq (1 - \alpha_t \mu)^2 \mathbb{E} \left[\|w_t - w^*\|^2 \right] + \alpha_t^2 M
\]

\[
\leq (1 - \alpha_t \mu) \mathbb{E} \left[\|w_t - w^*\|^2 \right] + \alpha_t^2 M \quad (\text{for } \alpha_t \mu < 1)
\]

• Right side is minimized when

\[
0 = -\mu \mathbb{E} \left[\|w_t - w^*\|^2 \right] + 2\alpha_t M \iff \alpha_t = \frac{\mu}{2M} \mathbb{E} \left[\|w_t - w^*\|^2 \right]
\]
Optimal Step Sizes (continued)

Let $\rho_t = \mathbf{E} \left[\| w_t - w^* \|^2 \right]$

$$\rho_{t+1} \leq (1 - \alpha_t \mu) \rho_t + \alpha_t^2 M$$

$$= \left(1 - \left(\frac{\mu}{2M} \rho_t \right) \mu \right) \rho_t + \left(\frac{\mu}{2M} \rho_t \right)^2 M$$

$$= \rho_t - \frac{\mu^2}{2M} \rho_t^2 + \frac{\mu^2}{4M} \rho_t^2$$

$$= \rho_t - \frac{\mu^2}{4M} \rho_t^2$$
Optimal Step Sizes (continued)

Let \(\rho_t = \mathbf{E} \left[\| w_t - w^* \|^2 \right] \)

\[
\frac{1}{\rho_{t+1}} \geq \left(\rho_t - \frac{\mu^2}{4M} \rho_t^2 \right)^{-1}
\]

\[
= \frac{1}{\rho_t} \left(1 - \frac{\mu^2}{4M} \rho_t \right)^{-1}
\]

\[
\geq \frac{1}{\rho_t} \left(1 + \frac{\mu^2}{4M} \rho_t \right)
\]

\[
= \frac{1}{\rho_t} + \frac{\mu^2}{4M}.
\]

(since \((1 - z)^{-1} \geq 1 + z \))
Optimal Step Sizes (continued)

Let \(\rho_t = \mathbb{E} \left[\|w_t - w^*\|^2 \right] \)

\[
\frac{1}{\rho_T} \geq \frac{1}{\rho_0} + \frac{\mu^2 T}{4M} \Rightarrow \rho_T \leq \frac{4M \rho_0}{4M + \mu^2 \rho_0 T}
\]

- Sometimes called a 1/T rate.
 - Slower than the linear rate of gradient descent, for convex problems.
Optimal Step Sizes (continued)

- Substitute back in to find how to set the step size:

\[
\alpha_t = \frac{\mu}{2M} \cdot \frac{4M \rho_0}{4M + \mu^2 \rho_0 t} = \frac{2\mu \rho_0}{4M + \mu^2 \rho_0 t} = \frac{1}{\Theta(t)}
\]

- This is a pretty common simple scheme
 - General form is

\[
\alpha_t = \frac{\alpha_0}{1 + \gamma t}
\]
Have we solved step sizes for SGD forever?

• No.

• We don’t usually know what μ, L, M, and ρ_0 are
 • Even if the problem is convex

• This “optimal” rate optimizes the upper bound on the expected distance-squared to the optimum
 • But sometimes this bound is loose, and other step size schemes might do better
What if we don’t know the parameters?

• One idea: still use a step size scheme of the form

\[\alpha_t = \frac{\alpha_0}{1 + \gamma t} \]

• Choose parameters \(\alpha_0 \) and \(t \) via some other method
 • For example, hand-tuning — which doesn’t scale

• Can we do this automatically?
 • Yes! This is an example of hyperparameter optimization
Other Techniques

• Decrease the step size in **epochs**

 • Still asymptotically \(\alpha_t = \frac{1}{\Theta(t)} \) but step size decreases in discrete steps

 • Useful for parallelization and saves a little compute

• **Per-parameter** learning rates — e.g. AdaGrad

 • Replace scalar \(\alpha \) with diagonal matrix \(\mathbf{A} \).

\[
x_{t+1} = x_t - A \nabla f(x_t; y_{i_t})
\]

• Helps with poorly scaled problems
Mini-Batching
Gradient Descent vs. SGD

• Gradient descent: **all examples at once**

\[w_{t+1} = w_t - \alpha_t \frac{1}{N} \sum_{i=1}^{N} \nabla f(w_t; x_i) \]

• Stochastic gradient descent: **one example at a time**

\[w_{t+1} = w_t - \alpha_t \nabla f(w_t; x_{i_t}) \]

• Is it really **all or nothing**? Can we do something intermediate?
Mini-Batch Stochastic Gradient Descent

- An intermediate approach

\[w_{t+1} = w_t - \alpha_t \frac{1}{|B_t|} \sum_{i \in B_t} \nabla f(w_t; x_i) \]

where \(B_t \) is sampled uniformly from the set of all subsets of \(\{1, \ldots, N\} \) of size \(b \).

- The \(b \) parameter is the **batch size**
- Typically choose \(b << N \).

- Also called **mini-batch gradient descent**
How does runtime cost of Mini-Batch compare to SGD and Gradient Descent?

• Takes **less time to compute each update** than gradient descent
 • Only needs to sum up b gradients, rather than N

\[w_{t+1} = w_t - \alpha_t \frac{1}{|B_t|} \sum_{i \in B_t} \nabla f(w_t; x_i) \]

• But takes **more time for each update** than SGD
 • So what’s the benefit?

• It’s more like gradient descent, so **maybe it converges faster** than SGD?
Mini-Batch SGD Converges

• Start by breaking up the update rule into expected update and noise

\[w_{t+1} - w^* = w_t - w^* - \alpha_t (\nabla h(w_t) - \nabla h(w^*)) \]

\[- \alpha_t \frac{1}{|B_t|} \sum_{i \in B_t} (\nabla f(w_t; x_i) - \nabla h(w_t)) \]

• Second moment bound

\[\mathbb{E} [\|w_{t+1} - w^*\|^2] = \mathbb{E} [\|w_t - w^* - \alpha_t (\nabla h(w_t) - \nabla h(w^*))\|^2] \]

\[+ \alpha_t^2 \mathbb{E} \left[\left\| \frac{1}{|B_t|} \sum_{i \in B_t} (\nabla f(w_t; x_i) - \nabla h(w_t)) \right\|^2 \right] \]
Mini-Batch SGD Converges (continued)

Let $\Delta_i = \nabla f(w_t; x_i) - \nabla h(w_t)$

$$
\mathbb{E} \left[\left\| \frac{1}{|B_t|} \sum_{i \in B_t} (\nabla f(w_t; x_i) - \nabla h(w_t)) \right\|^2 \right]
$$

$$
= \mathbb{E} \left[\left\| \frac{1}{|B_t|} \sum_{i \in B_t} \Delta_i \right\|^2 \right] = \frac{1}{|B_t|^2} \mathbb{E} \left[\left\| \sum_{i=1}^N \beta_i \Delta_i \right\|^2 \right]
$$

$$
= \frac{1}{|B_t|^2} \mathbb{E} \left[\left(\sum_{i=1}^N \beta_i \Delta_i \right)^T \left(\sum_{j=1}^N \beta_j \Delta_j \right) \right] = \frac{1}{|B_t|^2} \mathbb{E} \left[\sum_{i=1}^N \sum_{j=1}^N \beta_i \beta_j \Delta_i^T \Delta_j \right]
$$
Mini-Batch SGD Converges (continued)

- Because we sampled B uniformly at random, for $i \neq j$

$$E[\beta_i \beta_j] = P(i \in B \land j \in B) = P(i \in B) P(j \in B | i \in B) = \frac{b}{N} \cdot \frac{b - 1}{N - 1}$$

$$E[\beta_i^2] = P(i \in B) = \frac{b}{N}$$

- So we can bound our square error term as

$$E \left[\left\| \frac{1}{B_t} \sum_{i \in B_t} (\nabla f(w_t; x_i) - \nabla h(w_t)) \right\|^2 \right] = \frac{1}{|B_t|^2} E \left[\sum_{i=1}^{N} \sum_{j=1}^{N} \beta_i \beta_j \Delta_i^T \Delta_j \right]$$

$$= \frac{1}{b^2} E \left[\sum_{i \neq j} \frac{b(b - 1)}{N(N - 1)} \Delta_i^T \Delta_j + \sum_{i=1}^{N} \frac{b}{N} \| \Delta_i \|^2 \right]$$
Mini-Batch SGD Converges (continued)

\[
E \left[\left\| \frac{1}{|B_t|} \sum_{i \in B_t} (\nabla f(w_t; x_i) - \nabla h(w_t)) \right\|^2 \right] = \frac{1}{bN} E \left[\frac{b - 1}{N - 1} \sum_{i \neq j} \Delta_i^T \Delta_j + \sum_{i=1}^{N} \|\Delta_i\|^2 \right]
\]

\[
= \frac{1}{bN} E \left[\frac{b - 1}{N - 1} \sum_{i=1}^{n} \sum_{j=1}^{n} \Delta_i^T \Delta_j + \sum_{i=1}^{N} \left(1 - \frac{b - 1}{N - 1} \right) \|\Delta_i\|^2 \right]
\]

\[
= \frac{1}{bN} E \left[0 + \sum_{i=1}^{N} \left(1 - \frac{b - 1}{N - 1} \right) \|\Delta_i\|^2 \right] = \frac{N - b}{bN(N - 1)} E \left[\sum_{i=1}^{N} \|\Delta_i\|^2 \right]
\]
Mini-Batch SGD Converges (continued)

\[
\mathbb{E} \left[\left\| \frac{1}{|B_t|} \sum_{i \in B_t} (\nabla f(w_t; x_i) - \nabla h(w_t)) \right\|^2 \right] = \frac{N - b}{b(N - 1)} \mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} \|\Delta_i\|^2 \right]
\]

\[
= \frac{N - b}{b(N - 1)} \mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} \|\nabla f(w_t; x_i) - \nabla h(w_t)\|^2 \right]
\]

\[
\leq \frac{N - b}{b(N - 1)} \cdot M
\]

\[
\leq \frac{M}{b}
\]

• Compared with SGD, squared error term decreased by a factor of \(b\)
Mini-Batch SGD Converges (continued)

• Recall that SGD converged to a noise ball of size

\[
\lim_{T \to \infty} \mathbb{E} \left[\| w_T - w^* \|^2 \right] \leq \frac{\alpha M}{2\mu - \alpha \mu^2}
\]

• Since mini-batching decreases error term by a factor of \(b\), it will have

\[
\lim_{T \to \infty} \mathbb{E} \left[\| w_T - w^* \|^2 \right] \leq \frac{\alpha M}{(2\mu - \alpha \mu^2)b}
\]

• Noise ball smaller by the same factor!
Advantages of Mini-Batch (reprise)

- Takes **less time to compute each update** than gradient descent
 - Only needs to sum up b gradients, rather than N

$$w_{t+1} = w_t - \alpha_t \frac{1}{|B_t|} \sum_{i \in B_t} \nabla f(w_t; x_i)$$

- Converges to a **smaller noise ball** than stochastic gradient descent

$$\lim_{T \to \infty} \mathbb{E} \left[\|w_T - w^*\|^2 \right] \leq \frac{\alpha M}{(2\mu - \alpha \mu^2)b}$$
How to choose the batch size?

• **Mini-batching is not a free win**
 • Naively, compared with SGD, it takes b times as much effort to get a b-times-as-accurate answer
 • But we could have gotten a b-times-as-accurate answer by just running SGD for b times as many steps with a step size of α/b.

• But it still makes sense to run it for **systems** and **statistical** reasons
 • Mini-batching exposes more parallelism
 • Mini-batching lets us estimate statistics about the full gradient more accurately

• Another use case for **metaparameter optimization**
Mini-Batch SGD is very widely used

- Including in basically all neural network training

- \(b = 32 \) is a typical default value for batch size
Overfitting, Generalization Error, and Regularization
Minimizing Training Loss is Not our Real Goal

• Training loss looks like

\[h(w) = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i) \]

• What we actually want to minimize is expected loss on new examples
 • Drawn from some real-world distribution \(\phi \)

\[\bar{h}(w) = E_{x \sim \phi} [f(w; x)] \]

• Typically, assume the training examples were drawn from this distribution
Overfitting

• Minimizing the training loss **doesn't generally minimize the expected loss** on new examples
 • They are two different objective functions after all

• Difference between the empirical loss on the training set and the expected loss on new examples is called the **generalization error**

• Even a model that has high accuracy on the training set can have terrible performance on new examples
 • Phenomenon is called **overfitting**
Demo
How to address overfitting

• **Many, many techniques** to deal with overfitting
 • Have varying computational costs

• But this is a systems course…so what can we do **with little or no extra computational cost?**

• Notice from the demo that **some loss functions do better than others**
 • Can we **modify our loss function** to prevent overfitting?
Regularization

• Add an extra **regularization term** to the objective function

• Most popular type: **L2 regularization**

\[
h(w) = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i) + \sigma^2 \|w\|_2^2 = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i) + \sigma^2 \sum_{k=1}^{d} x_k^2
\]

• Also popular: **L1 regularization**

\[
h(w) = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i) + \gamma \|w\|_1 = \frac{1}{N} \sum_{i=1}^{N} f(w; x_i) + \gamma \sum_{k=1}^{d} \|x_k\|
\]
Benefits of Regularization

• **Cheap to compute**
 - For SGD and L2 regularization, there’s just an extra scaling
 \[w_{t+1} = (1 - 2\alpha_t \sigma^2) w_t - \alpha_t \nabla f(w_t; x_{i_t}) \]

• **L2 regularization makes the objective strongly convex**
 - This makes it easier to get and prove bounds on convergence

• **Helps with overfitting**
Demo
How to choose the regularization parameter?

• One way is to use an independent validation set to estimate the test error, and set the regularization parameter manually so that it is high enough to avoid overfitting
 • This is what we saw in the demo

• But doing this naively can be computationally expensive
 • Need to re-run learning algorithm many times

• Yet another use case for hyperparameter optimization
More general forms of regularization

• **Regularization** is used more generally to describe anything that helps prevent overfitting
 • By biasing learning by making some models more desirable *a priori*

• Many techniques that give throughput improvements also have a regularizing effect
 • Sometimes: a **win-win** of better statistical and hardware performance
Early Stopping
Asymptotically large training sets

• Setting 1: we have a distribution Φ and we sample a very large (asymptotically infinite) number of points from it, then run stochastic gradient descent on that training set for only N iterations.

• Can our algorithm in this setting overfit?
 • No, because its training set is asymptotically equal to the true distribution.

• Can we compute this efficiently?
 • No, because its training set is asymptotically infinitely large
Consider a second setting

• Setting 1: we have a distribution Φ and we sample a very large (asymptotically infinite) number of points from it, then run stochastic gradient descent on that training set for only N iterations.

• Setting 2: we have a distribution Φ and we sample N points from it, then run stochastic gradient descent using each of these points exactly once.

• What is the difference between the output of SGD in these two settings?
 • Asymptotically, there’s no difference!
 • So SGD in Setting 2 will also never overfit
Early Stopping

• Motivation: if we only use each training example once for SGD, then we can’t overfit.

• So if we only use each example a few times, we probably won’t overfit too much.

• Early stopping: just stop running SGD before it converges.
Benefits of Early Stopping

• **Cheap to compute**
 • Literally just does less work
 • It seems like the technique was designed to make systems run faster

• **Helps with overfitting**
How Early to Stop

• You’ll see this in detail in one of next Wednesday’s papers.

• Yet another application of hyperparameter tuning.
Questions?

• Upcoming things
 • Labor day next Monday — no lecture
 • Paper Presentation #1 on Wednesday — read paper before class