Machine Learning Frameworks

CS6787 Lecture 12 — Fall 2018
Feedback survey results

- Programming assignments
 - Many people expressed interest in having these

- Positive comments about the breakout discussions and activities
 - More time for discussion
The course so far

• We’ve talked about optimization algorithms
 • And ways to make them converge in fewer iterations

• We’ve talked about parallelism and memory bandwidth
 • And how to take advantage of these to increase throughput

• We’ve talked about hardware for machine learning

• But how do we bring it all together?
Imagine designing an ML system from scratch

• It’s easy to start with basic **SGD** in C++
 • Implement objective function, gradient function, then make a loop

• But there’s **so much more to be done** with our C++ program
 • Need to manually code a **step size scheme**
 • Need to modify code to **add mini-batching**
 • Need to add new code to use **SVRG** and **momentum**
 • Need to completely rewrite code to run in **parallel** or with **low-precision**
 • Impossible to get it to run on a **GPU** or on an **ASIC**
 • And at each step we have to **debug** and **validate** the program

• **There’s got to be a better way!**
The solution: machine learning frameworks

• Goal: **make ML easier**
 • From a software engineering perspective
 • Make the computations more reliable, debuggable, and robust

• Goal: **make ML scalable**
 • To large datasets running on distributed heterogeneous hardware

• Goal: **make ML accessible**
 • So that even people who aren’t ML systems experts can get good performance
ML frameworks come in a few flavors

• **General machine learning frameworks**
 • Goal: make a wide range of ML workloads and applications easy for users

• **General big data processing frameworks**
 • Focus: computing large-scale parallel operations quickly
 • Typically has machine learning as a major, but not the only, application

• **Deep learning frameworks**
 • Focus: fast scalable backpropagation and inference
 • Although typically supports other applications as well
How can we evaluate an ML framework?

• **How popular is it?**
 - Use drives use — ML frameworks have a **snowball effect**
 - Popular frameworks attract more development and eventually more features

• **Who is behind it?**
 - Major companies ensure long-term support

• **What are its features?**
 - Often the least important consideration — unfortunately
Common Features of Machine Learning Frameworks
What do ML frameworks support?

• **Basic tensor operations**
 • Provides the low-level math behind all the algorithms

• **Automatic differentiation**
 • Used to make it easy to run backprop on any model

• Simple-to-use composable implementations of **systems techniques**
 • Like minibatching, SVRG, Adam, etc.
 • Includes automatic hyperparameter optimization
Tensors

• CS way to think about it: a tensor is a **multidimensional array**

• Math way to think about it: a tensor is a multilinear map

\[T : \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \times \cdots \times \mathbb{R}^{d_n} \rightarrow \mathbb{R} \]

\[T(x_1, x_2, \ldots, x_n) \text{ is linear in each } x_i, \text{ with other inputs fixed.} \]

• Here the number \(n \) is called the order of the tensor

• For example, a matrix is just a 2nd-order tensor
Examples of Tensors in Machine Learning

• The CIFAR10 dataset consists of 60000 32x32 color images
 • We can write the training set as a tensor

\[T_{\text{CIFAR10}} \in \mathbb{R}^{32 \times 32 \times 3 \times 60000} \]

• Gradients for deep learning can also be tensors
 • Example: fully-connected layer with 100 input and 100 output neurons, and mini-batch size \(b = 32 \)

\[G \in \mathbb{R}^{100 \times 100 \times 32} \]
Common Operations on Tensors

• **Elementwise operations** — looks like vector sum

 • Example: Hadamard product
 \[
 (A \circ B)_{i_1, i_2, \ldots, i_n} = A_{i_1, i_2, \ldots, i_n} B_{i_1, i_2, \ldots, i_n}
 \]

• **Broadcast operations** — expand along one or more dimensions

 • Example: \(A \in \mathbb{R}^{11 \times 1}, B \in \mathbb{R}^{11 \times 5} \), then with broadcasting
 \[
 (A + B)_{i, j} = A_{i, 1} + B_{i, j}
 \]

 • Extreme version of this is the **tensor product**

• **Matrix-multiply-like operations** — sum or reduce along a dimension

 • Also called **tensor contraction**
Broadcasting makes ML easy to write

• Here’s how easy it is to write the loss and gradient for logistic regression
 • Doesn’t even need to include a for-loop
 • This code is in **Julia** but it would be similar in other languages

```julia
function logreg_loss(w, X, Y)
    return sum(log(1 + exp(-Y .* (X * w))));
end

function logreg_grad(w, X, Y)
    return -X' * (Y ./ (1 + exp(Y .* (X * w))));
end
```
Tensors: a systems perspective

• **Loads of data parallelism**
 • Tensors are in some sense the structural embodiment of data parallelism
 • Multiple dimensions → **not always obvious** which one best to parallelize over

• **Predictable linear memory access patterns**
 • Great for locality

• **Many different ways** to organize the computation
 • Creates opportunities for frameworks to **automatically optimize**
Automatic Differentiation: Motivation

• One interesting class of **bug**
 • Imagine you write up an SGD algorithm with some objective and some gradient
 • You hand-code the computation of the objective and gradient
 • What happens when you **differentiate incorrectly**?

• This bug is **more common than you’d think**
 • Almost everybody will encounter it eventually if they hand-write objectives
 • And it’s really **difficult and annoying to debug** as models become complex

• The solution: **generate the gradient automatically** from the objective!
Many ways to do differentiation

• **Symbolic differentiation**
 • Represent the whole computation symbolically, then differentiate symbolically
 • Can be *costly to compute* and requires symbolization of code

• **Numerical differentiation**
 • Approximate the derivative by using something like \(f'(x) \approx \frac{f(x + \delta) - f(x - \delta)}{2\delta} \)
 • Can introduce *round-off errors* that compound over time

• **Automatic differentiation**
 • Apply *chain rule directly* to fundamental operations in program
Automatic differentiation

• Couple of ways to do it, but most common is backpropagation

• Does a forward pass, and then a backward pass to compute the gradient

• Key result: automatic differentiation can compute gradients
 • For any function that has differentiable components
 • To arbitrary precision
 • Using a small constant factor additional compute compared with the cost to compute the objective
General Machine Learning Frameworks
scikit-learn

A broad, full-featured toolbox of machine learning and data analysis tools

In Python

Features support for classification, regression, clustering, dimensionality reduction: including SVM, logistic regression, k-Means, PCA
• **NumPy**
 - Adds large multi-dimensional array and matrix types (tensors) to python
 - Supports basic numerical operations on tensors, on the CPU

• **SciPy**
 - Builds on NumPy and adds tools for scientific computing
 - Supports optimization, data structures, statistics, symbolic computing, etc.
 - Also has an interactive interface (Jupyter) and a neat plotting tool (matplotlib)

• **Great ecosystem for prototyping systems**
Theano

• Machine learning library for python
 • Created by the University of Montreal

• Supports tight integration with NumPy

• But also supports CPU and GPU integration
 • Making it very fast for a lot of applications

• Development has ceased because of competition from other libraries
Julia and MATLAB

• Julia
 • Relatively new language (6 years old) with growing community
 • Natively supports numerical computing and all the tensor ops
 • Syntax is nicer than Python, and it’s often faster
 • But less support from the community and less library support

• MATLAB
 • The decades-old standard for numerical computing
 • Supports tensor computation, and many people use it for ML
 • But has less attention from the community because it’s proprietary
Even lower-level: BLAS and LAPACK

• All these frameworks run on top of basic linear algebra operations

• **BLAS**: Basic Linear Algebra Subroutines
 • Also has support on GPUs with NVIDIA **cuBLAS**

• **LAPACK**: Linear Algebra PACKage

• If you’re implementing from scratch, you **still want to use these**!
General Big Data Processing Frameworks
The original: MapReduce/Hadoop

- Invented by Google to handle distributed processing

- People started to use it for **distributed machine learning**
 - And people still use it today

- But it’s mostly been **supplanted by other libraries**
 - And for good reason
 - Hadoop does a **lot of disk writes** in order to be robust against failure of individual machines — not necessary for machine learning applications
Apache Spark

• Open-source **cluster computing framework**
 • Built in **Scala**, and can also embed in **Python**

• Developed by Berkeley AMP lab
 • Now spun off into a company: **DataBricks**

• The original pitch: **100x faster** than Hadoop/MapReduce

• Architecture based on resilient distributed datasets (**RDDs**)
 • Essentially a **distributed fault-tolerant data-parallel array**
Spark MLLib

- **Scalable machine learning library** built on top of Spark

- Supports most of the same algorithms scikit-learn supports
 - Classification, regression, decision trees, clustering, topic modeling
 - Not primarily a deep learning library

- Major benefit: **interaction with other processing in Spark**
 - SparkSQL to handle database-like computation
 - GraphX to handle graph-like computation
Apache Mahout

- **Backend-independent** programming environment for machine learning
 - Can support Spark as a backend
 - But also supports basic MapReduce/Hadoop

- Focuses mostly on collaborative filtering, clustering, and classification
 - Similarly to MLLib and scikit-learn

- Also not very deep learning focused
Many more here

• Lots of very good frameworks for large-scale parallel programming don’t end up becoming popular

• Takeaway: important to release code people can use easily
 • And capture a group of users who can then help develop the framework
Deep Learning Frameworks
Caffe

• Deep learning framework
 • Developed by Berkeley AI research

• **Declarative expressions** for describing network architecture

• **Fast** — runs on CPUs and GPUs out of the box
 • And supports a lot of optimization techniques

• **Huge community** of users both in academia and industry
Caffe code example

```python
name: "CIFAR10_quick_test"
layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 1 dim: 3 dim: 32 dim: 32 } }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
  }
}
```
TensorFlow

- End-to-end **deep learning system**
 - Developed by Google Brain

- API primarily in **Python**
 - With support for other languages

- Architecture: build up a computation graph in Python
 - Then the framework schedules it automatically on the available resources
 - Although recently TensorFlow has announced an **eager version**

- **Super-popular**, still the de facto standard for ML
TensorFlow code example

```python
# outputs of 'y', and then average across the batch.
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# Train
for _ in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

# Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
```
• **Python** package that focuses on
 • **Tensor computation** (like numpy) with strong **GPU acceleration**
 • **Deep Neural Networks** built on a tape-based autograd system

• **Eager computation** out-of-the-box

• Uses a technique called **reverse-mode auto-differentiation**
 • Allows users to change network behavior arbitrarily with zero lag or overhead
 • Fastest implementation of this method

• PyTorch is **gaining popularity**— may overtake TensorFlow, but hasn’t yet
```python
def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]
                  train_loss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data[0])))
```
• Deep learning library from Apache.

• Scalable C++ backend
 • Support for many frontend languages, including Python, Scala, C++, R, Perl…

• Focus on scalability to multiple GPUs
 • Sometimes performs better than competing approaches.
define network
net = nn.Sequential()
with net.name_scope():
 net.add(nn.Dense(128, activation='relu'))
 net.add(nn.Dense(64, activation='relu'))
 net.add(nn.Dense(10))

epoch = 10
Use Accuracy as the evaluation metric.
metric = mx.metric.Accuracy()
softmax_cross_entropy_loss = gluon.loss.SoftmaxCrossEntropyLoss()
for i in range(epoch):
 # Reset the train data iterator.
 train_data.reset()
 # Loop over the train data iterator.
 for batch in train_data:
 # Splits train data into multiple slices along batch_axis
 # and copy each slice into a context.
…and many other frameworks for ML

• Theano

• ONNX

• New frameworks will continue to be developed!
Conclusion

• Lots of ML frameworks

• The popular ones change quickly over time
 • But which one is popular matters

• It’s becoming easier to do ML every year

• QUESTIONS?