Machine Learning Frameworks

CS6787 Lecture 12 — Fall 2017
The course so far

• We’ve talked about optimization algorithms
 • And ways to make them converge in fewer iterations

• We’ve talked about parallelism and memory bandwidth
 • And how to take advantage of these to increase throughput

• We’ve talked about hardware for machine learning

• But how do we bring it all together?
Imagine designing an ML system from scratch

• It’s easy to start with basic SGD in C++
 • Implement objective function, gradient function, then make a loop

• But there’s so much more to be done with our C++ program
 • Need to manually code a step size scheme
 • Need to modify code to add mini-batching
 • Need to add new code to use SVRG and momentum
 • Need to completely rewrite code to run in parallel or with low-precision
 • Impossible to get it to run on a GPU or on an ASIC
 • And at each step we have to debug and validate the program

• There’s got to be a better way!
The solution: machine learning frameworks

• Goal: make ML easier
 • From a software engineering perspective
 • Make the computations more reliable, debuggable, and robust

• Goal: make ML scalable
 • To large datasets running on distributed heterogeneous hardware

• Goal: make ML accessible
 • So that even people who aren’t ML systems experts can get good performance
ML frameworks come in a few flavors

- **General machine learning frameworks**
 - Goal: make a wide range of ML workloads and applications easy for users

- **General big data processing frameworks**
 - Focus: computing large-scale parallel operations quickly
 - Typically has machine learning as a major, but not the only, application

- **Deep learning frameworks**
 - Focus: fast scalable backpropagation
 - Although typically supports other applications as well
How can we evaluate an ML framework?

• **How popular is it?**
 • Use drives use — ML frameworks have a *snowball effect*
 • Popular frameworks attract more development and eventually more features

• **Who is behind it?**
 • Major companies ensure long-term support

• **What are its features?**
 • Often the least important consideration — unfortunately
Common Features of Machine Learning Frameworks
What do ML frameworks support?

• **Basic tensor operations**
 • Provides the low-level math behind all the algorithms

• **Automatic differentiation**
 • Used to make it easy to run backprop on any model

• Simple-to-use composable implementations of **systems techniques**
 • Like minibatching, SVRG, Adam, etc.
 • Includes automatic hyperparameter optimization
Tensors

• CS way to think about it: a tensor is a **multidimensional array**

• Math way to think about it: a tensor is a multilinear map

\[T : \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \times \cdots \times \mathbb{R}^{d_n} \to \mathbb{R} \]

\[T(x_1, x_2, \ldots, x_n) \text{ is linear in each } x_i, \text{ with other inputs fixed.} \]

• Here the number \(n \) is called the **order** of the tensor

• For example, a matrix is just a 2\(^{nd}\)-order tensor
Examples of Tensors in Machine Learning

• The **CIFAR10 dataset** consists of 60000 32x32 color images
 • We can write the training set as a tensor

\[T_{\text{CIFAR10}} \in \mathbb{R}^{32 \times 32 \times 3 \times 60000} \]

• **Gradients** for deep learning can also be tensors
 • Example: fully-connected layer with 100 input and 100 output neurons, and mini-batch size \(b = 32 \)

\[G \in \mathbb{R}^{100 \times 100 \times 32} \]
Common Operations on Tensors

• **Elementwise operations** — looks like vector sum
 • Example: Hadamard product
 \[(A \circ B)_{i_1, i_2, \ldots, i_n} = A_{i_1, i_2, \ldots, i_n} B_{i_1, i_2, \ldots, i_n}\]

• **Broadcast operations** — expand along one or more dimensions
 • Example: \(A \in \mathbb{R}^{11 \times 1}, B \in \mathbb{R}^{11 \times 5}\), then with broadcasting
 \[(A + B)_{i, j} = A_{i, 1} + B_{i, j}\]
 • Extreme version of this is the **tensor product**

• **Matrix-multiply-like operations** — sum or reduce along a dimension
 • Also called **tensor contraction**
Broadcasting makes ML easy to write

• Here’s how easy it is to write the loss and gradient for logistic regression
 • Doesn’t even need to include a for-loop
 • This code is in Julia but it would be similar in other languages

```julia
function logreg_loss(w, X, Y)
    return sum(log(1 + exp(-Y .* (X * w))));
end

function logreg_grad(w, X, Y)
    return -X' * (Y ./ (1 + exp(Y .* (X * w))));
end
```
Tensors: a systems perspective

• **Loads of data parallelism**
 - Tensors are in some sense the structural embodiment of data parallelism
 - Multiple dimensions → **not always obvious** which one best to parallelize over

• **Predictable linear memory access patterns**
 - Great for locality

• **Many different ways** to organize the computation
 - Creates opportunities for frameworks to **automatically optimize**
Automatic Differentiation: Motivation

• One interesting class of bug
 • Imagine you write up an SGD algorithm with some objective and some gradient
 • You hand-code the computation of the objective and gradient
 • What happens when you differentiate incorrectly?

• This bug is more common than you’d think
 • Almost everybody will encounter it eventually if they hand-write objectives
 • And it’s really difficult and annoying to debug as models become complex

• The solution: generate the gradient automatically from the objective!
Many ways to do differentiation

• **Symbolic differentiation**
 • Represent the whole computation symbolically, then differentiate symbolically
 • Can be *costly to compute* and requires symbolization of code

• **Numerical differentiation**
 • Approximate the derivative by using something like $f'(x) \approx \frac{f(x + \delta) - f(x - \delta)}{2\delta}$
 • Can introduce *round-off errors* that compound over time

• **Automatic differentiation**
 • Apply *chain rule directly* to fundamental operations in program
Automatic differentiation

• Couple of ways to do it, but most common is backpropagation

• Does a forward pass, and then a backward pass to compute the gradient

• Key result: automatic differentiation can compute gradients
 • For any function that has differentiable components
 • To arbitrary precision
 • Using a small constant factor additional compute compared with the cost to compute the objective
General Machine Learning Frameworks
• **scikit-learn**
 - A broad, full-featured toolbox of machine learning and data analysis tools
 - In **Python**
 - Features support for classification, regression, clustering, dimensionality reduction: including SVM, logistic regression, \(k \)-Means, PCA
• **NumPy**
 - Adds large multi-dimensional array and matrix types (tensors) to python
 - Supports basic numerical operations on tensors, on the CPU

• **SciPy**
 - Builds on NumPy and adds tools for scientific computing
 - Supports optimization, data structures, statistics, symbolic computing, etc.
 - Also has an interactive interface (ipython) and a neat plotting tool (matplotlib)

• **Great ecosystem for prototyping systems**
Theano

• Machine learning library for **python**
 • Created by the University of Montreal

• Supports **tight integration with NumPy**

• But also supports **CPU and GPU integration**
 • Making it very fast for a lot of applications

• **Development has ceased** because of competition from other libraries
Julia and MATLAB

Julia
- Relatively new language (5 years old)
- Natively supports numerical computing and all the tensor ops
- Syntax is nicer than Python, and it’s often faster
- But less support from the community and less library support

MATLAB
- The decades-old standard for numerical computing
- Supports tensor computation, and many people use it for ML
- But has less attention from the community because it’s proprietary
Even lower-level: BLAS and LAPACK

• All these frameworks run on top of basic linear algebra operations

• **BLAS**: Basic Linear Algebra Subroutines
 • Also has support on GPUs with NVIDIA cuBLAS

• **LAPACK**: Linear Algebra PACKage

• If you’re implementing from scratch, you still want to use these!
General Big Data Processing Frameworks
The original: MapReduce/Hadoop

• Invented by Google to handle distributed processing

• People started to use it for **distributed machine learning**
 • And people still use it today

• But it’s mostly been **supplanted by other libraries**
 • And for good reason
 • Hadoop does a **lot of disk writes** in order to be robust against failure of individual machines — not necessary for machine learning applications
Apache Spark

• Open-source **cluster computing framework**
 • Built in **Scala**, and can also embed in **Python**

• Developed by Berkeley AMP lab
 • Now spun off into a company: **DataBricks**

• The original pitch: **100x faster** than Hadoop/MapReduce

• Architecture based on resilient distributed datasets (**RDDs**)
 • Essentially a **distributed fault-tolerant data-parallel array**
Spark MLLib

- **Scalable machine learning library** built on top of Spark

- Supports most of the same algorithms scikit-learn supports
 - Classification, regression, decision trees, clustering, topic modeling
 - Not primarily a deep learning library

- Major benefit: **interaction with other processing in Spark**
 - SparkSQL to handle database-like computation
 - GraphX to handle graph-like computation
Apache Mahout

- **Backend-independent** programming environment for machine learning
 - Can support Spark as a backend
 - But also supports basic MapReduce/Hadoop

- Focuses mostly on collaborative filtering, clustering, and classification
 - Similarly to MLLib and scikit-learn

- Also not very deep learning focused
Many more here

• Lots of very good frameworks don’t end up becoming popular

• I’ve actually worked on one myself: Delite
 • Also in Scala
 • Faster than Spark on a lot of applications (3x)
 • But less user friendly — not something you could just download and run

• Takeaway: important to release code people can use easily
 • And capture a group of users who can then help develop the framework
Deep Learning Frameworks
Caffe

• Deep learning framework
 • Developed by Berkeley AI research

• Declarative expressions for describing network architecture

• Fast — runs on CPUs and GPUs out of the box
 • And supports a lot of optimization techniques

• Huge community of users both in academia and industry
Caffe code example

```cpp
1  name: "CIFAR10_quick_test"
2  layer {
3    name: "data"
4    type: "Input"
5    top: "data"
6    input_param { shape: { dim: 1 dim: 3 dim: 32 dim: 32 } }
7  }
8  layer {
9    name: "conv1"
10   type: "Convolution"
11   bottom: "data"
12   top: "conv1"
13   param {
14     lr_mult: 1
15   }
16   param {
17     lr_mult: 2
18   }
19   convolution_param {
20          stride: 1
21          pad: 1
22          kernel_size: 3
23          num_output: 32
24    }
25  }
```
TensorFlow

- End-to-end **deep learning system**
 - Developed by Google Brain

- API primarily in **Python**
 - With support for other languages

- Architecture: build up a computation graph in Python
 - Then the framework schedules it automatically on the available resources
 - Although recently TensorFlow has announced an **eager version**

- **Super-popular**, perhaps the de facto standard for ML right now
outputs of 'y', and then average across the batch.
cross_entropy = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
Train
for _ in range(1000):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images,
 y_: mnist.test.labels}))
• **Python** package that focuses on
 • Tensor computation (like numpy) with strong GPU acceleration
 • Deep Neural Networks built on a tape-based autograd system

• **Eager computation** out-of-the-box

• Uses a technique called **reverse-mode auto-differentiation**
 • Allows users to change network behavior arbitrarily with zero lag or overhead
 • Fastest implementation of this method

• PyTorch is the **new hotness** — may overtake TensorFlow
PyTorch example

```python
//
# def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({}:0f)%]	Loss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0]))
```
Conclusion

• **Lots of ML frameworks**

• The popular ones change quickly over time
 • But which one is popular matters

• It’s becoming easier to do ML every year

• **QUESTIONS?**