Hardware for Machine Learning

CS6787 Lecture 11 — Fall 2017
Recap: modern ML hardware

• Lots of different types
 • CPUs
 • GPUs
 • FPGAs
 • Specialized accelerators

• Right now, GPUs are dominant…we’ll get to why later
What does a modern machine learning pipeline look like?

• Not just a neural network:

![Diagram of a DNN](image-url)
What does a modern machine learning pipeline look like?

• Many different components

Preprocessing of the training set \rightarrow \textbf{DNN training} \rightarrow \textbf{DNN inference} \rightarrow \text{New examples to be processed}
Where can hardware help?

• **Everywhere!**

• There’s interest in using hardware everywhere in the pipeline
 • both *adapting existing hardware architectures*, and
 • *developing new ones*

• What improvements can we get?
 • Lower latency inference
 • Higher throughput training
 • Lower power cost
How can hardware help? Three ways

• Speed up the **basic building blocks** of machine learning computation
 • Major building block: **matrix-matrix multiply**
 • Another major building block: **convolution**

• Add **data/memory paths specialized** to machine learning workloads
 • Example: having a local cache to store network weights

• Create **application-specific functional units**
 • Not for general ML, but for a specific domain or application
Why are GPUs so popular for machine learning?
Why are GPUs so popular for *training deep neural networks*?
GPU vs CPU

- **CPU is a general purpose processor**
 - Modern CPUs spend most of their area on deep caches
 - This makes the CPU a great choice for applications with random or non-uniform memory accesses

- **GPU is optimized for**
 - more compute intensive workloads
 - streaming memory models

Machine learning applications look more like this
FLOPS: GPU vs CPU

• **FLOPS**: floating point operations per second

From Karl Rupp’s blog

This was the best diagram I could find that shows trends over time.
Memory bandwidth: CPU vs GPU

- GPUs have **higher memory bandwidths** than CPUs
 - E.g. new NVIDIA Tesla V100 has a claimed **900 GB/s memory bandwidth**
 - Whereas Intel Xeon E7 has only about **100 GB/s memory bandwidth**

- But, this **comparison is unfair!**
 - GPU memory bandwidth is the bandwidth to GPU memory
 - E.g. on a PCIE2, bandwidth is only **32 GB/s for a GPU**
What limits deep learning?

• Is it compute bound or memory bound?

• Ideally: it’s **compute bound**
 • Why? Matrix-matrix multiply takes $O(n^2)$ memory but $O(n^3)$ compute

• Sometimes it is memory/communication bound
 • Especially when we are running at **large scale on a cluster**
Challengers to the GPU

• More **compute-intensive CPUs**
 • Like Intel’s Phi line — promise same level of compute performance and better handling of sparsity

• **Low-power devices**
 • Like mobile-device-targeted chips
 • Configurable hardware like FPGAs and CGRAs

• Accelerators that **speed up matrix-matrix multiply**
 • Like Google’s TPU
Will all computation become dense matrix-matrix multiply?
Deep learning and matrix-matrix multiply

• Traditionally, the most costly operation for deep learning for both training and inference is dense matrix-matrix multiply

• Matrix-matrix multiply at $O(n^3)$ scales worse than other operations
 • So should expect it to become even more of a bottleneck as problems scale

• Deep learning is still exploding and capturing more compute cycles
 • Motivates the question: will most computation in the future become dense matrix-matrix multiply?
What if dense matrix multiply takes over?

• Great opportunities for **new highly specialized hardware**
 • The TPU is already an example of this
 • It’s a glorified matrix-matrix multiply engine

• **Significant power savings** from specialized hardware
 • But not as much as if we could use something like sparsity

• It might put us all out of work
 • Who cares about researching algorithms when there’s only one algorithm anyone cares about?
What if matrix multiply doesn’t take over?

• Great opportunities for designing new heterogeneous, application-specific hardware
 • We might want one chip for SVRG, one chip for low-precision

• Interesting systems/framework opportunities to give users suggestions for which chips to use
 • Or even to automatically dispatch work within a heterogeneous datacenter

• Community might fragment
 • Into smaller subgroups working on particular problems
The truth is somewhere in the middle

• We’ll probably see both
 • a lot of dense matrix-matrix multiply compute
 • a lot of opportunities for faster more specialized compute

• New models are being developed every day
 • And we shouldn’t read too much into the current trends

• But this means we get the best of both worlds
 • We can do research on either side and still have impact
Recent work on hardware for machine learning

Abstracts from papers at architecture conferences this year
Questions?

• Conclusion
 • Lots of interesting work on hardware for machine learning
 • Lots of opportunities for interdisciplinary research

• Upcoming things
 • Paper Review #10 — due today
 • Project proposal — due today
 • Paper Presentation #11 on Wednesday — TPU