Learning User Interaction Models for Predicting Web Search Result Preferences

Eugene Agichtein Eric Brill Susan Dumais Robert Ragno

Presented by
JiaLei Wang Seok Hyun Jin
Introduction

● Traditional approach to ranking for web search
 ○ Features that describe a candidate page
 ○ Supervised learning methods
 ○ Dependent on explicit relevance

● Use *implicit relevance feedback*
 ○ Clickthrough data
 ○ Scroll time
 ○ Reading time

● How can we model user’s behavior? Which implicit features correlate to explicit ratings?

● Given implicit feedback, how can we effectively use them to produce reliable preference?
Introduction:
Limitations of Existing Methods

● Don’t make extensive use of *implicit feedback*
 ○ Clickthrough, dwell time
 ○ Cheap and abundant
● Don’t necessarily generalize well for real-world web search
 ○ Web search is not controlled
 ■ “Users” may act irrationally, maliciously or may not even be human
 ● Not all users are “experts”
Introduction:
How can we address these limitations?

- How can we model user behavior? Which implicit features correlate to explicit ratings?
- Given implicit features, how can we effectively use them to determine preference?

- Use of a distributional model of user behavior
 - Aggregated behavior of large number of users
 - Allows self-correct for noise

- Extension of strategies to include richer set of features
 - Partial to more descriptive model of user behavior
 - Pre and Post-search user behavior
Learning User Behavior Model

- As we noted earlier, real web search user behavior can be "noisy".
- Hence, instead of treating each user as a reliable "expert", we use statistics to infer relevance information from many unreliable data of user inputs.
- Approach: Model user web search behavior as:

 \[
 \text{relevance information} + \text{background noise} = \text{user behavior}
 \]
Figure 3.1: Relative click frequency for top 30 result positions over 3,500 queries and 120,000 searches.
Learning User Behavior Model: Case study in click distribution

Figure 3.2: Relative click frequency for queries with varying PTR (Position of Top Relevant document).
Learning User Behavior Model

- Activity:
 - How do you interpret relevance result from previous distribution?

Figure 3.3: Relative corrected click frequency for relevant documents with varying PTR (Position of Top Relevant).
Learning User Behavior Model: Robust user behavior model

- Post-search activities are comprised of clicks, page dwell time, clicks from search, etc.
- We have just shown how the ‘relevance-driven’ click distribution can be recovered from the biased observed distribution.
- We conjecture that for other aspects of user behavior, we can do something similar. Observed value o of a feature f for query q and result r can be expressed as
 \[o(q,r,f) = C(r,f) + \text{rel}(q,r,f) \]
- where $C(r,f)$ is the ‘background’ distribution
Learning User Behavior Model:

Features representing user behavior

<table>
<thead>
<tr>
<th>Query-text features</th>
<th>Derived feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>TitleOverlap</td>
<td>Fraction of shared words between query and title</td>
</tr>
<tr>
<td>SummaryOverlap</td>
<td>Fraction of shared words between query and summary</td>
</tr>
<tr>
<td>QueryURLOverlap</td>
<td>Fraction of shared words between query and URL</td>
</tr>
<tr>
<td>QueryDomainOverlap</td>
<td>Fraction of shared words between query and domain</td>
</tr>
<tr>
<td>QueryLength</td>
<td>Number of tokens in query</td>
</tr>
<tr>
<td>QueryNextOverlap</td>
<td>Average fraction of words shared with next query</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Browsing features</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TimeOnPage</td>
<td>Page dwell time</td>
</tr>
<tr>
<td>CumulativeTimeOnPage</td>
<td>Cumulative time for all subsequent pages after search</td>
</tr>
<tr>
<td>TimeOnDomain</td>
<td>Cumulative dwell time for this domain</td>
</tr>
<tr>
<td>TimeOnShortUrl</td>
<td>Cumulative time on URL prefix, dropping parameters</td>
</tr>
<tr>
<td>IsFollowedLink</td>
<td>1 if followed link to result, 0 otherwise</td>
</tr>
<tr>
<td>IsExactUrlMatch</td>
<td>0 if aggressive normalization used, 1 otherwise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Derived feature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IsRedirected</td>
<td>1 if initial URL same as final URL, 0 otherwise</td>
</tr>
<tr>
<td>IsPathFromSearch</td>
<td>1 if only followed links after query, 0 otherwise</td>
</tr>
<tr>
<td>ClicksFromSearch</td>
<td>Number of hops to reach page from query</td>
</tr>
<tr>
<td>AverageDwellTime</td>
<td>Average time on page for this query</td>
</tr>
<tr>
<td>DwellTimeDeviation</td>
<td>Deviation from overall average dwell time on page</td>
</tr>
<tr>
<td>CumulativeDeviation</td>
<td>Deviation from average cumulative time on page</td>
</tr>
<tr>
<td>DomainDeviation</td>
<td>Deviation from average time on domain</td>
</tr>
<tr>
<td>ShortURLDeviation</td>
<td>Deviation from average time on short URL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clickthrough features</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Position of the URL in Current ranking</td>
</tr>
<tr>
<td>ClickFrequency</td>
<td>Number of clicks for this query, URL pair</td>
</tr>
<tr>
<td>ClickRelativeFrequency</td>
<td>Relative frequency of a click for this query and URL</td>
</tr>
<tr>
<td>ClickDeviation</td>
<td>Deviation from expected click frequency</td>
</tr>
<tr>
<td>IsNextClicked</td>
<td>1 if there is a click on next position, 0 otherwise</td>
</tr>
<tr>
<td>IsPreviousClicked</td>
<td>1 if there is a click on previous position, 0 otherwise</td>
</tr>
<tr>
<td>IsClickAbove</td>
<td>1 if there is a click above, 0 otherwise</td>
</tr>
<tr>
<td>IsClickBelow</td>
<td>1 if there is click below, 0 otherwise</td>
</tr>
</tbody>
</table>
Learning User Behavior Model: Learning a predictive behavior model

- Instead of heuristics or insights, we use supervised learning to map features to user preferences.
 - Advantage: We can always mine more data instead of relying on intuition and limited lab evidence.
- Training data: query/URL pair, explicit label by expert.
- Training method: RankNet (Burges et al. 2005)
 - Scalable neural net training
 - Pairwise preference
 - Use gradient descent to rank
Predicting User Preferences:
Baseline Model

- Baseline Model ("current")
 - A state-of-the-art page ranking system currently used by a major web search engine.
 - The algorithm ranks results based on hundreds of features such as query to document similarity, query to anchor text similarity, and intrinsic page quality.
Predicting User Preferences: Clickthrough Model

- Clickthrough Model (Joachims et al. 2007)
 - Strategy SA (Skip Above):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1. | Kernel Machines
 | http://svm.first.gmd.de/ |
| 2. | Support Vector Machine
| 3. | SVM-Light Support Vector Machine
| 4. | An Introduction to Support Vector Machines
| 5. | Support Vector Machine and Kernel ... References
| 6. | Archives of SUPPORT-VECTOR-MACHINES ...
 | http://www.jiscmail.ac.uk/lists/SUPPORT... |
| 7. | Lucent Technologies: SVM demo applet
| 8. | Royal Holloway Support Vector Machine
 | http://svm.dcs.rhbnc.ac.uk |
Predicting User Preferences: Clickthrough Model

- Clickthrough Model (Joachims et al. 2007)
 - Strategy SA+N (Skip Above + Skip Next):

1. Kernel Machines
 http://svm.first.gmd.de/
2. Support Vector Machine
 http://jbolivar.freeservers.com/
3. SVM-Light Support Vector Machine
 http://ais.gmd.de/~thorsten/svm_light/
4. An Introduction to Support Vector Machines
 http://www.support-vector.net/
5. Support Vector Machine and Kernel ... References
 http://svm.research.bell-labs.com/SVMrefs.html
6. Archives of SUPPORT-VECTOR-MACHINES ...
 http://www.jiscmail.ac.uk/lists/SUPPORT...
7. Lucent Technologies: SVM demo applet
 http://svm.research.bell-labs.com/SVT/SVMsvt.html
8. Royal Holloway Support Vector Machine
 http://svm.dcs.rhbnc.ac.uk
Predicting User Preferences: Clickthrough Model

- Clickthrough Model with filtering
 - Strategy CD (deviation d): Given query, compute observed click frequency distribution $o(r,p)$
 \[\text{dev}(r,p) = o(r,p) - C(p) \]
 - If $\text{dev}(r,p) > d$, retain the click as input to SA+N strategy

SA + N

SA + N
Predicting User Preferences: Clickthrough and General User Model

- Clickthrough Model with filtering
 - Strategy CDiff(margin m): For each pair of results \(r_i, r_j \) predict preference of \(r_i \) over \(r_j \) iff
 - \(\text{dev}(r_i, p_i) - \text{dev}(r_j, p_j) > m \)
 - Strategy CD + CDiff (deviation d, margin m): CDiff and CD are complimentary. CDiff is a generalization of the clickthrough frequency model of CD, while ignoring the positional information used in CD.

- General User Behavior Model
 - User Behavior Strategy: Supervised learning model based on direct & derived features described in previous slide.
Experimental Setup: Methods Compared and Datasets

- **Methods compared:**
 - Current
 - SA
 - CD
 - UserBehavior
 - SA+N
 - CDiff
 - CD+CDiff

- **3500 queries randomly sampled**
 - Top 10 results for each query manually rated by experts
 - Defined 3 subsets
 - **Q1**: Queries with *at least 1 click* (3500 queries)
 - **Q10**: Queries with *at least 10 clicks* (1300 queries)
 - **Q20**: Queries with *at least 20 clicks* (1000 queries)
Experimental Setup:
Evaluation Methodology and Metrics

- Evaluation based on pairwise agreement with explicit
- Query Precision \((q) = \frac{\#\{\text{pref} : \text{pref} \in \text{prediction}(q) \land \text{pref} \in \text{explicit}\}}{\#\text{prediction}(q)}\)
 - Fraction of pairs predicted that agree with human ratings
- Query Recall \((q) = \frac{\#\{\text{pref} : \text{pref} \in \text{prediction}(q) \land \text{pref} \in \text{explicit}\}}{\#\text{explicit}}\)
 - Fraction of human-rated preferences predicted correctly
- Average Query Precision/Recall for evaluation
Experimental Setup:
More on Metrics

Deviation: $\text{dev}(r, p) > d$

Margin: $\text{dev}(r_i, p_i) - \text{dev}(r_j, p_j) > m$

d and m as tradeoff between Query Precision and Recall

Activity 2:
What effect will changing d and m (both increase/decrease) have on query precision and query recall? Why?

- Query Precision(q) = $\frac{\#\{\text{pref} : \text{pref} \in \text{prediction}(q) \land \text{pref} \in \text{explicit}\}}{\#\text{prediction}(q)}$

- Query Recall(q) = $\frac{\#\{\text{pref} : \text{pref} \in \text{prediction}(q) \land \text{pref} \in \text{explicit}\}}{\#\text{explicit}}$
Experimental Setup: More on Metrics

Deviation: \(\text{dev}(r, p) > d \)

Margin: \(\text{dev}(r_i, p_i) - \text{dev}(r_j, p_j) > m \)

\(d \) and \(m \) as tradeoff between Query Precision and Recall

- \(d, m \) increase
 - Precision goes up
 - Recall goes down

- \(d, m \) decrease
 - Precision goes down
 - Recall goes up
Experimental Setup: Results

Figure 6.1: Precision vs. Recall of SA, SA+N, CD, CDiff, CD+CDiff, UserBehavior, and Current relevance prediction methods over the Q1 dataset.
Figure 6.3: Recall vs. Precision of CD+CDiff and UserBehavior for query sets Q1, Q10, and Q20 (queries with at least 1, at least 10, and at least 20 clicks respectively).
Figure 6.2: Precision vs. recall for predicting relevance with each group of features individually.
Conclusion

- Observed a wide range of strategies:
 - SA, SA+N
 - CD, CDiff
 - Considers “background noise”
 - UserBehavior
 - Richer features
- Accounting for the “background noise” before applying clickthrough strategies can improve accuracy.
- Using richer features that include user behavior before and after search lead to increased accuracy.