Large-Scale Validation and Analysis of Interleaved Search Evaluation

Olivier Chapelle, Thorsten Joachims, Filip Radlinski, Yisong Yue

Department of Computer Science
Cornell University
Decide between two Ranking Functions

Distribution $P(u,q)$ of users u, queries q

Retrieval Function 1
$f_1(u,q) \rightarrow r_1$

Retrieval Function 2
$f_2(u,q) \rightarrow r_2$

Which one is better?

U(tj,"SVM",r_1)

U(tj,"SVM",r_2)
Implicit Utility Feedback

• Approach 1: Absolute Metrics
 – Do metrics derived from observed user behavior provide absolute feedback about retrieval quality of \(f \)?
 – For example:
 • \(U(f) \sim \text{numClicks}(f) \)
 • \(U(f) \sim 1/\text{abandonment}(f) \)

• Approach 2: Paired Comparison Tests
 – Do paired comparison tests provide relative preferences between two retrieval functions \(f_1 \) and \(f_2 \)?
 – For example:
 • \(f_1 \succ f_2 \iff \text{pairedCompTest}(f_1, f_2) > 0 \)
Absolute Metrics: Metrics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Aggregation</th>
<th>Hypothesized Change with Decreased Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandonment Rate</td>
<td>% of queries with no click</td>
<td>N/A</td>
<td>Increase</td>
</tr>
<tr>
<td>Reformulation Rate</td>
<td>% of queries that are followed by reformulation</td>
<td>N/A</td>
<td>Increase</td>
</tr>
<tr>
<td>Queries per Session</td>
<td>Session = no interruption of more than 30 minutes</td>
<td>Mean</td>
<td>Increase</td>
</tr>
<tr>
<td>Clicks per Query</td>
<td>Number of clicks</td>
<td>Mean</td>
<td>Decrease</td>
</tr>
<tr>
<td>Click@1</td>
<td>% of queries with clicks at position 1</td>
<td>N/A</td>
<td>Decrease</td>
</tr>
<tr>
<td>Max Reciprocal Rank*</td>
<td>1/rank for highest click</td>
<td>Mean</td>
<td>Decrease</td>
</tr>
<tr>
<td>Mean Reciprocal Rank*</td>
<td>Mean of 1/rank for all clicks</td>
<td>Mean</td>
<td>Decrease</td>
</tr>
<tr>
<td>Time to First Click*</td>
<td>Seconds before first click</td>
<td>Median</td>
<td>Increase</td>
</tr>
<tr>
<td>Time to Last Click*</td>
<td>Seconds before final click</td>
<td>Median</td>
<td>Decrease</td>
</tr>
</tbody>
</table>

(*) only queries with at least one click count
How does User Behavior Reflect Retrieval Quality?

User Study in ArXiv.org
- Natural user and query population
- User in natural context, not lab
- Live and operational search engine
- Ground truth by construction

ORIG > SWAP2 > SWAP4
- ORIG: Hand-tuned fielded
- SWAP2: ORIG with 2 pairs swapped
- SWAP4: ORIG with 4 pairs swapped

ORIG > FLAT > RAND
- ORIG: Hand-tuned fielded
- FLAT: No field weights
- RAND: Top 10 of FLAT shuffled
Absolute Metrics: Experiment Setup

• Experiment Setup
 – Phase I: 36 days
 • Users randomly receive ranking from Orig, Flat, Rand
 – Phase II: 30 days
 • Users randomly receive ranking from Orig, Swap2, Swap4
 – User are permanently assigned to one experimental condition based on IP address and browser.

• Basic Statistics
 – ~700 queries per day / ~300 distinct users per day

• Quality Control and Data Cleaning
 – Test run for 32 days
 – Heuristics to identify bots and spammers
 – All evaluation code was written twice and cross-validated
Absolute Metrics: Summary and Conclusions

- None of the absolute metrics reflects expected order.
- Most differences not significant after one month of data.
- Absolute metrics not suitable for ArXiv-sized search engines.
Yahoo! Search: Results

- **Retrieval Functions**
 - 4 variants of production retrieval function

- **Data**
 - 10M – 70M queries for each retrieval function
 - Expert relevance judgments

- **Results**
 - Still not always significant even after more than 10M queries per function
 - Only Click@1 consistent with DCG@5.

<table>
<thead>
<tr>
<th>Metric</th>
<th>D>C</th>
<th>D>B</th>
<th>C>B</th>
<th>D>A</th>
<th>C>A</th>
<th>B>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Last Click</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to First Click</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Reciprocal Rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Reciprocal Rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pSkip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clicks@1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clicks per Query</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abandonment Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCG5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Chapelle et al., 2012]
Approaches to Utility Elicitation

• Approach 1: Absolute Metrics
 – Do metrics derived from observed user behavior provide absolute feedback about retrieval quality of f?
 – For example:
 • $U(f) \sim \text{numClicks}(f)$
 • $U(f) \sim 1/\text{abandonment}(f)$

• Approach 2: Paired Comparison Tests
 – Do paired comparison tests provide relative preferences between two retrieval functions f_1 and f_2?
 – For example:
 • $f_1 \succ f_2 \iff \text{pairedCompTest}(f_1, f_2) > 0$
Paired Comparisons: What to Measure?

Interpretation: \((r_1 \succ r_2) \iff \text{clicks}(r_1) > \text{clicks}(r_2)\)

1. Kernel Machines
 http://svm.first.gmd.de/
2. Support Vector Machine
 http://jbolivar.freeservers.com/
3. An Introduction to Support Vector Machines
 http://www.support-vector.net/
4. Archives of SUPPORT-VECTOR-MACHINES ...
 http://www.jiscmail.ac.uk/lists/SUPPORT...
5. SVM-Light Support Vector Machine
 http://ais.gmd.de/~thorsten/svm_light/

1. Kernel Machines
 http://svm.first.gmd.de/
2. SVM-Light Support Vector Machine
 http://ais.gmd.de/~thorsten/svm_light/
3. Support Vector Machine and Kernel ... References
 http://svm.research.bell-labs.com/SVMrefs.html
4. Lucent Technologies: SVM demo applet
5. Royal Holloway Support Vector Machine
 http://svm.dcs.rhul.ac.uk
Paired Comparison: Balanced Interleaving

Interleaving(r_1, r_2)

Interpretation: $(r_1 \succ r_2) \iff \text{clicks(topk}(r_1)) > \text{clicks(topk}(r_2))$

Model of User: Better retrieval functions is more likely to get more clicks.

Invariant: For all k, top k of balanced interleaving is union of top k_1 of r_1 and top k_2 of r_2 with $k_1=k_2 \pm 1$.

[Joachims, 2001] [Radlinski et al., 2008]
Balanced Interleaving: a Problem

- Example:
 - Two rankings r_1 and r_2 that are identical up to one insertion (X)
 - “Random user” clicks uniformly on results in interleaved ranking
 1. “X” \rightarrow r_2 wins
 2. “A” \rightarrow r_1 wins
 3. “B” \rightarrow r_1 wins
 4. “C” \rightarrow r_1 wins
 5. “D” \rightarrow r_1 wins

\rightarrow biased
Paired Comparisons: Team-Game Interleaving

Interleaving(r_1, r_2)

1. Kernel Machines
 http://svm.first.gmd.de/
2. Support Vector Machine
 http://jbolivar.freeservers.com/
3. An Introduction to Support Vector Machines
 http://www.support-vector.net/
4. Archives of SUPPORT-VECTOR-MACHINES...
 http://www.jiscmail.ac.uk/lists/SUPPORT...
5. SVM-Light Support Vector Machine
 http://ais.gmd.de/~thorsten/svm light/

Next Pick

1. Kernel Machines
 http://svm.first.gmd.de/
2. Support Vector Machine
 http://jbolivar.freeservers.com/
3. SVM-Light Support Vector Machine
 http://ais.gmd.de/~thorsten/svm light/
4. An Introduction to Support Vector Machines
 http://www.support-vector.net/
5. Support Vector Machine and Kernel ... References
 http://svm.research.bell-labs.com/SVMrefs.html
6. Archives of SUPPORT-VECTOR-MACHINES...
 http://www.jiscmail.ac.uk/lists/SUPPORT...
7. Lucent Technologies: SVM demo applet
 http://svm.research.bell-labs.com/SVT/SVMsvt.html

Interpretation: ($r_1 \succ r_2$) \iff clicks(T_1) > clicks(T_2)

Invariant: For all k, in expectation same number of team members in top k from each team.
Paired Comparisons: Experiment Setup

• Experiment Setup
 – Phase I: 36 days
 • Balanced Interleaving of (Orig,Flat) (Flat,Rand) (Orig,Rand)
 – Phase II: 30 days
 • Balanced Interleaving of (Orig,Swap2) (Swap2,Swap4) (Orig,Swap4)

• Quality Control and Data Cleaning
 – Same as for absolute metrics
Paired Comparison Tests: Summary and Conclusions

- All interleaving experiments reflect the expected order.
- All differences are significant after one month of data.
- Same results also for alternative data-preprocessing.
Paired Comparison Tests: Summary and Conclusions

- All interleaving experiments reflect the expected order.
- Results similar to Balanced Interleaving.
- Most differences are significant after one month of data.
Yahoo and Bing: Interleaving Results

• Yahoo Web Search [Chapelle et al., 2012]
 – Four retrieval functions (i.e. 6 paired comparisons)
 – Balanced Interleaving
 → All paired comparisons consistent with ordering by NDCG.

• Bing Web Search [Radlinski & Craswell, 2010]
 – Five retrieval function pairs
 – Team-Game Interleaving
 → Consistent with ordering by NDGC when NDCG significant.
Efficiency: Interleaving vs. Absolute

- Yahoo Web Search
 - More than 10M queries for absolute measures
 - Approx 700k queries for interleaving

- Experiment
 - REPEAT
 - Draw bootstrap sample S of size x
 - Evaluate metric on S for pair (P,Q) of retrieval functions
 - Estimate $y = P(P >_m Q | x)$

➔ Interleaving by factor ~ 10 more efficient than Click@1.

[Chapelle, Joachims, Radlinski, Yue, to appear]
Efficiency: Interleaving vs. Explicit

- Bing Web Search
 - 4 retrieval function pairs
 - ~12k manually judged queries
 - ~200k interleaved queries

- Experiment
 - $p = \text{probability that NDCG is correct on subsample of size } y$
 - $x = \text{number of queries needed to reach same } p\text{-value with interleaving}$

$\implies \text{Ten interleaved queries are equivalent to one manually judged query.}$

[Radlinski & Craswell, 2010]
Summary and Conclusions

• Interleaving agrees better with expert assessment than absolute metrics
 – Design as pairwise comparison
• All interleaving techniques seem to do roughly equally well
• Efficiency of interleaving compared to expert assessment and Click@1