Predicting Diverse Subsets Using Structural SVMs

Yisong Yue, Thorsten Joachims

Cornell University
Department of Computer Science
Diversified Retrieval

- **Ambiguous queries:**
 - Example query: “SVM”
 - ML method
 - Service Master Company
 - Magazine
 - School of veterinary medicine
 - Sport Verein Meppen e.V.
 - SVM software
 - SVM books
 - “submodular” performance measure
 - make sure each user gets at least one relevant result

- **Learning Queries:**
 - Find all information about a topic
 - Eliminate redundant information

Query: SVM
1. Kernel Machines
2. SVM book
3. SVM-light
4. SVM
5. Service Master Co
6. SV Meppen
8. SVM-light
9. Intro to SVM
10. ...

[YueJo08]
Generic Structural SVM

• **Application Specific Design of Model**

 – Loss function $\Delta(y_i, y)$

 – Representation $\Phi(x, y)$

• **Prediction:**

 \[
 \hat{y} = \arg\max_{y \in Y} \{ \mathbf{w}^T \Phi(x, y) \}
 \]

• **Training:**

 \[
 \min_{\mathbf{w}, \xi \geq 0} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C}{n} \sum_{i=1}^{n} \xi_i \\
 \text{s.t.} \quad \forall y \in Y \setminus y_1 : \mathbf{w}^T \Phi(x_1, y_1) \geq \mathbf{w}^T \Phi(x_1, y) + \Delta(y_1, y) - \xi_1 \\
 \ldots \\
 \forall y \in Y \setminus y_n : \mathbf{w}^T \Phi(x_n, y_n) \geq \mathbf{w}^T \Phi(x_n, y) + \Delta(y_n, y) - \xi_n
 \]

• **Applications:** Parsing, Sequence Alignment, Clustering, etc.
Applying StructSVM to New Problem

• **General**
 – SVM-struct algorithm and implementation
 – Theory (e.g. number of iterations independent of n)

• **Application specific**
 – Loss function $\Delta(y_i, y)$
 – Representation $\Phi(x, y)$
 – Algorithms to compute
 $$\tilde{y} = \arg\max_{y \in Y} \{w^T \Phi(x_i, y)\}$$
 $$\tilde{y} = \arg\max_{y \in Y} \{\Delta(y_i, y) + w^T \Phi(x_i, y)\}$$

• **Properties**
 – General framework for discriminative learning
 – Direct modeling, not reduction to classification/regression
 – “Plug-and-play”
Approach

• **Prediction Problem:**
 - Given set x, predict size k subset y that satisfies most users.

• **Approach: Topic Red. \approx Word Red. [SwMaKi08]**

 \Rightarrow $y = \{ D1, D2, D3, D4 \}$

 - Weighted Max Coverage: $y = \arg\max_{y \subset x, |y|=k} \left\{ \sum_{w \in \mathcal{U}(y)} \text{score}(w) \right\}$

 - Greedy algorithm is 1-1/e approximation [Khuller et al 97]

 \Rightarrow **Learn the benefit weights:** $\text{score}(w) = w^T \phi(w, x)$

[YueJo08]
Features Describing Word Importance

• **How important is it to cover word w**
 - w occurs in at least X% of the documents in x
 - w occurs in at least X% of the titles of the documents in x
 - w is among the top 3 TFIDF words of X% of the documents in x
 - w is a verb
 → Each defines a feature in $\phi(w, x)$

• **How well a document d covers word w**
 - w occurs in d
 - w occurs at least k times in d
 - w occurs in the title of d
 - w is among the top k TFIDF words in d
 → Each defines a separate vocabulary and scoring function

[D1 D2 D3 D4 D6 D7] + [D1 D2 D3 D4 D6 D7] + … + [D1 D2 D3 D4 D6 D7] [YueJo08]
Loss Function and Separation Oracle

- **Loss function:** $\Delta(y_i, y)$
 - Popularity-weighted percentage of subtopics not covered in y
 \Rightarrow More costly to miss popular topics
 - Example:

- **Separation oracle:** $\hat{y} = \arg \max_{y \in Y} \{ \Delta(y_i, y) + \bar{w}^T \Phi(x_i, y) \}$
 - Again a weighted max coverage problem
 \Rightarrow add artificial word for each subtopic with percentage weight
 - Use greedy algorithm again

\[\Delta(y_i, \{D1, D10\}) = \frac{3}{12} \]
\[\Delta(y_i, \{D2, D7\}) = \frac{10}{12} \]
Experiments

• **Data:**
 - TREC 6-8 Interactive Track
 - Relevant documents manually labeled by subtopic
 - 17 queries (~700 documents), 12/4/1 training/validation/test
 - Subset size k=5, two feature sets (div, div2)

• **Results:**

<table>
<thead>
<tr>
<th>Method</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.469</td>
</tr>
<tr>
<td>Okapi</td>
<td>0.472</td>
</tr>
<tr>
<td>Unweighted Model</td>
<td>0.471</td>
</tr>
<tr>
<td>Essential Pages</td>
<td>0.434</td>
</tr>
<tr>
<td>SVM$^\Delta_{div}$</td>
<td>0.349</td>
</tr>
<tr>
<td>SVM$^\Delta_{div2}$</td>
<td>0.382</td>
</tr>
</tbody>
</table>