CS 6784 Paper Presentation

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

John Lafferty, Andrew McCallum, Fernando C. N. Pereira

Presenters: Brad Gulko and Stephanie Hyland

February 20, 2014
Main Contribution Summary

- This 2001 paper introduced the Conditional Random Field (CRF).
- Describes efficient representation of field potentials in terms of features.
- Provides two algorithms for finding Maximum Likelihood parameter values.
- Provides some really unconvincing examples...
Main Contribution Summary

... examples are NOT the strongest point of this paper
Talk Structure

- Brad
 - CRF in context
Talk Structure

- Brad
 - CRF in context
 - The Label Bias Problem
Talk Structure

- Brad
 - CRF in context
 - The Label Bias Problem
- Stephanie
 - Parameter Estimation

\[
\rho(y|x) = \frac{1}{Z(x)} \exp \left(\sum_{i \in V_i} \lambda_i g_i (y_i, x) + \sum_{e \in E} \mu_e g_e (y_e, x) \right) \\
\theta = (\lambda_1, \lambda_2, \cdots \mu_1, \mu_2, \cdots) \\
\theta_{t+1} = \theta_t - [Hf(\theta_t)]^{-1} \nabla f(\theta_t)
\]
Talk Structure

- Brad
 - CRF in context
 - The Label Bias Problem
- Stephanie
 - Parameter Estimation
 - Experiments
 - Conclusion

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
CRF in Context

- \(X = \{X_1, X_2, \cdots\} \) be a set of observed RV
- \(Y = \{Y_1, Y_2, \cdots\} \) be a set of label RV
- \(X, Y \) be a set of joint observations of \(X, Y \)

<table>
<thead>
<tr>
<th>Directed</th>
<th>Generative</th>
<th>Discriminative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td>Undirected</td>
<td>???</td>
<td>???</td>
</tr>
</tbody>
</table>
CRF in Context

- $\mathbf{X} = \{X_1, X_2, \cdots \}$ be a set of observed RV
- $\mathbf{Y} = \{Y_1, Y_2, \cdots \}$ be a set of label RV
- X, Y be a set of joint observations of \mathbf{X}, \mathbf{Y}

<table>
<thead>
<tr>
<th></th>
<th>Generative</th>
<th>Discriminative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directed</td>
<td>HMM</td>
<td>??</td>
</tr>
<tr>
<td>Undirected</td>
<td>MRF</td>
<td>??</td>
</tr>
</tbody>
</table>

HMM, ME-MM, MRF, CRF

In 2001, HMM, ME-MM and MRF were well known, the paper presents the CRF.

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
CRF in Context

- \(X = \{ X_1, X_2, \cdots \} \) be a set of observed RV
- \(Y = \{ Y_1, Y_2, \cdots \} \) be a set of label RV
- \(X, Y \) be a set of joint observations of \(X, Y \)

<table>
<thead>
<tr>
<th>Directed</th>
<th>Generative</th>
<th>Discriminative</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>ME-MM</td>
<td></td>
</tr>
<tr>
<td>MRF</td>
<td>???</td>
<td></td>
</tr>
</tbody>
</table>

In 2001, HMM, ME-MM and MRF were well known,
CRF in Context

- \(X = \{ X_1, X_2, \cdots \} \) be a set of observed RV
- \(Y = \{ Y_1, Y_2, \cdots \} \) be a set of label RV
- \(X, Y \) be a set of joint observations of \(X, Y \)

<table>
<thead>
<tr>
<th></th>
<th>Generative</th>
<th>Discriminative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directed</td>
<td>HMM</td>
<td>ME-MM</td>
</tr>
<tr>
<td>Undirected</td>
<td>MRF</td>
<td>CRF</td>
</tr>
</tbody>
</table>

In 2001, HMM, ME-MM and MRF were well known, the paper presents the CRF.

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Generative vs. Discriminative

- Generative: maximise joint \(P(Y, X) = P(Y | X) P(X) \)
- Discriminative: maximise conditional \(P(Y | X) \)
- When is Discriminative helpful?
 - Tractability requires independence
Generative vs. Discriminative

- **Generative:** maximise joint \(P(Y, X) = P(Y|X)P(X) \)
- **Discriminative:** maximise conditional \(P(Y|X) \)
- **When is Discriminative helpful?**
 - Tractability requires independence
 - ...but sometimes there are important correlations in \(X \).
Examples: important correlations

- Long range interactions in human genomics
Examples: important correlations

- Long range interactions in human genomics
- Pronoun definition and binding
Examples: important correlations

- Long range interactions in human genomics
- Pronoun definition and binding
- Context in whole scene image recognition
Examples: important correlations

- Long range interactions in human genomics
- Pronoun definition and binding
- Context in whole scene image recognition
- Recursive structure in language

Generative vs. Discriminative
Directed vs. Undirected

- For a graphical model $G(E, V)$ with joint potential $\Psi(V)$.
- Let C be the set of cliques (fully connected subgroups) in G, with $c \in C$ having edges E_c and vertices V_c.

Presenters: Brad Gulko and Stephanie Hyland

CS 6784 Paper Presentation
Directed vs. Undirected

- For a graphical model $G(E, V)$ with joint potential $\Psi(V)$.

- Let C be the set of *cliques* (fully connected subgroups) in G, with $c \in C$ having edges E_c and vertices V_c.

- Finally, $\text{Dom}(V)$ is the set of all values assumable by the random variables, $V = X \cup Y$.

$$P(V) = \frac{1}{Z} \Psi(V), \quad Z = \sum_{v \in \text{Dom}(V)} \Psi(v)$$

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Directed vs. Undirected, continued

- Compactness requires factorization (Hammersley-Clifford, 1971):

\[
\psi(V) = \prod_{c \in C} \psi_c(V_c)
\]
Directed vs. Undirected, continued

- Compactness requires factorization (Hammersley-Clifford, 1971):
 \[\psi(V) = \prod_{c \in \mathcal{C}} \psi_c(V_c) \]

- Directed: local Normalization -
 \[\forall c \in \mathcal{C}, \sum_{v \in \text{Dom}(V_c)} \psi_c(v) = 1 \]
Directed vs. Undirected, continued

- Compactness requires factorization (Hammersley-Clifford, 1971):
 \[\psi(\mathbf{V}) = \prod_{c \in \mathcal{C}} \psi_c(\mathbf{V}_c) \]

- Directed: local Normalization - each \(\psi_c \) is a probability.
 \[\forall c \in \mathcal{C}, \quad \sum_{\mathbf{v} \in \text{Dom}(\mathbf{V}_c)} \psi_c(\mathbf{v}) = 1 \]
Directed vs. Undirected, continued

- Compactness requires factorization (Hammersley-Clifford, 1971):
 \[\psi(\mathbf{V}) = \prod_{c \in \mathcal{C}} \psi_c(\mathbf{V}_c) \]

- Directed: local Normalization - each \(\psi_c \) is a probability.
 \[\forall c \in \mathcal{C}, \sum_{\mathbf{v} \in \text{Dom}(\mathbf{V}_c)} \psi_c(\mathbf{v}) = 1 \]

- Undirected: Global Normalization - relaxes this constraint...
 but what does it buy us?
The Label Bias Problem: Conditional Markov Model (EM-MM)

Toy Problem – fragment of a ME-MM

\[Y_1 \in \{1,2\} \quad Y_2 \in \{3,4\} \]

Training Data:
8: \(X = \{RI\} \quad Y = \{13\} \)
2: \(X = \{RO\} \quad Y = \{24\} \)
The Label Bias Problem: Conditional Markov Model (EM-MM)

Toy Problem – fragment of a ME-MM

Training Data:
8: $X = \{RI\} \quad Y = \{13\}$
2: $X = \{RO\} \quad Y = \{24\}$

<table>
<thead>
<tr>
<th>Y_1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1 = R$</td>
<td>0.8</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\psi(Y_2, X_2, Y_1)$</th>
<th>Y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$X_2 = I$</td>
<td>8</td>
</tr>
<tr>
<td>$X_2 = O$</td>
<td>ε</td>
</tr>
<tr>
<td>$Z = I$</td>
<td>ε</td>
</tr>
<tr>
<td>$Z = O$</td>
<td>ε</td>
</tr>
</tbody>
</table>
The Label Bias Problem: Conditional Markov Model (EM-MM)

Toy Problem – fragment of a ME-MM

\[Y_1 \in \{1,2\} \quad Y_2 \in \{3,4\} \]

Training Data:
8: \(X = \{RI\} \quad Y = \{13\} \)
2: \(X = \{RO\} \quad Y = \{24\} \)

\[
\begin{array}{c|c|c}
\hline
P(Y_1|X_1) & Y_1 & \hline
\hline
 & I & 2 & \\
X_1 \to \& 0.8 & 0.2 & \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\hline
\Psi(Y_2,X_2,Y_1) & 3 & 4 & \\
\hline
 Y_1=1 & \hline
X_2=I & 8 & \epsilon & \\
X_2=O & \epsilon & \epsilon & \\
\hline
 Y_1=2 & \hline
X_2=I & \epsilon & \epsilon & \\
X_2=O & \epsilon & 2 & \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\hline
\hline
P(Y_2|X_2,Y_1) & 3 & 4 & \\
\hline
 Y_1=1 & \hline
X_2=I & 1-\epsilon & \epsilon & \\
X_2=O & 0.5 & 0.5 & \\
\hline
 Y_1=2 & \hline
X_2=I & 0.5 & 0.5 & \\
X_2=O & \epsilon & 1-\epsilon & \\
\hline
\end{array}
\]
The Label Bias Problem: Conditional Markov Model (EM-MM)

Toy Problem – fragment of a ME-MM

\[Y_1 \in \{1,2\}, Y_2 \in \{3,4\} \]

Training Data:
\[8: X = \{RI\} \quad Y = \{13\} \]
\[2: X = \{RO\} \quad Y = \{24\} \]

Viterbi is \(P(Y_1, Y_2 | X) \)
\[= P(Y_2 | Y_1, X)P(Y_1 | X) \]
\[= P(Y_1 | X_1)P(Y_2 | Y_1, X_2) \]

Lets try it for \(X = \{RO\} \)

Which labeling wins?
The Label Bias Problem: Conditional Markov Model (EM-MM)

Toy Problem – fragment of a ME-MM

Viterbi is $P(Y_1, Y_2 | X)$

\[
P(Y_1, Y_2 | X) = P(Y_2 | Y_1, X)P(Y_1 | X)
\]

or

\[
P(Y_1, Y_2 | X) = P(Y_1 | X)P(Y_2 | Y_1, X_2)
\]

Let's try it for $X = \{RO\}$

But we want

$Y = \{2, 4\}$

What happened?
The Label Bias Problem: Conditional Markov Model (EM-MM)

Toy Problem – fragment of a ME-MM

Local Normalization requires a probability... So...
\[\frac{\varepsilon}{2\varepsilon} \Rightarrow \frac{1}{2} \]
The Label Bias Problem: Potentials

Toy Problem – fragment of a CRF

\[\Psi(X, Y_1, Y_2) = \Psi(X_1, Y_1)\Psi(Y_1, Y_2)\Psi(X_2, Y_2) \]

\[Y_1 \in \{1,2\} \quad Y_2 \in \{3,4\} \]

Training Data:

8: \(X = \{RI\} \quad Y = \{13\}\)

2: \(X = \{RO\} \quad Y = \{24\}\)
The Label Bias Problem: Potentials

Toy Problem – fragment of a CRF

\[\Psi(X, Y_1, Y_2) = \Psi(X_1, Y_1)\Psi(Y_1, Y_2)\Psi(X_2, Y_2) \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y_1)</th>
<th>(Y_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

\(Y_1 \in \{1,2\}, Y_2 \in \{3,4\} \)

Training Data:
1. \(X = \{RI\}, Y = \{13\}\)
2. \(X = \{RO\}, Y = \{24\}\)
The Label Bias Problem: Potentials

Toy Problem – fragment of a CRF

\[\Psi(X, Y_1, Y_2) = \Psi(X_1, Y_1) \Psi(Y_1, Y_2) \Psi(X_2, Y_2) \]

| \(Y_1, Y_2 \) | \(\Psi(X_1, Y_1) \) | \(\Psi(Y_1, Y_2) \) | \(\Psi(X_2, Y_2) \) | \(\Psi(Y_1, Y_2, X=RO) \) | \(P(Y_1, Y_2|X) \) |
|----------------|----------------|----------------|----------------|----------------|----------------|
| 1,3 | 8 | 8 | 2 | | |
| 1,4 | 8 | \(\varepsilon \) | 2 | | |
| 2,3 | 2 | \(\varepsilon \) | 2 | | |
| 2,4 | 2 | 2 | 2 | | |

\(Y_1 \in \{1,2\} \) \(Y_2 \in \{3,4\} \)

Training Data:
- 8: \(X = \{RI\} \) \(Y = \{13\} \)
- 2: \(X = \{RO\} \) \(Y = \{24\} \)

Which labeling wins, now?
The Label Bias Problem: Potentials

Toy Problem – fragment of a CRF

\[\Psi(X, Y_1, Y_2) = \Psi(X_1, Y_1)\Psi(Y_1, Y_2)\Psi(X_2, Y_2) \]

Training Data:
8: \(X = \{RI\} \) \(Y = \{13\} \)
2: \(X = \{RO\} \) \(Y = \{24\} \)

Because potentials do not have to normalize into probabilities until AFTER aggregation, they don’t suffer from inappropriate conditioning.
Fun fact: We have seen this in class before!

- Graphical model $G(E, V)$ with joint potential $\Psi(V)$, C the set of cliques in G with $c \in C$ having edges E_c and vertices V_c

$$P(V) \propto \Psi(V) = \prod_{c \in C} \Psi_c(V_c)$$
Fun fact: We have seen this in class before!

- Graphical model $G(E, V)$ with joint potential $\Psi(V)$, C the set of cliques in G with $c \in C$ having edges E_c and vertices V_c

$$P(V) \propto \Psi(V) = \prod_{c \in C} \Psi_c(V_c)$$

- **M3 nets**: cliques are pairs, and all conditioned on observed x:

$$P(y|x) \propto \prod_{(i,j) \in E} \psi_{ij}(y_i, y_j, x)$$
Fun fact: We have seen this in class before!

- Graphical model $G(E, V)$ with joint potential $\Psi(V)$, C the set of cliques in G with $c \in C$ having edges E_c and vertices V_c

$$P(V) \propto \Psi(V) = \prod_{c \in C} \Psi_c(V_c)$$

- M^3 nets: cliques are pairs, and all conditioned on observed x:

$$P(y|x) \propto \prod_{(i,j) \in E} \psi_{ij}(y_i, y_j, x)$$

- AMN: cliques are pairs of nodes and singletons:

$$P_\phi(y) = \frac{1}{Z} \prod_i^{N} \phi_i(y_i) \prod_{i,j \in E} \phi_{i,j}(y_i, y_j)$$
Where do Parameters Come From?

CRF’s are part of the same general class, \(P(\mathbf{V}) \propto \Psi(\mathbf{V}) = \prod_{c \in \mathcal{C}} \Psi_c(\mathbf{V}_c) \)
Where do Parameters Come From?

CRF’s are part of the same general class, $P(V) \propto \Psi(V) = \prod_{c \in C} \Psi_c(V_c)$

For trees, cliques are pairs of vertices sharing an edge $(y|e)$, and single vertices $(y|v)$:

$$
\Psi(V) = \prod_{e \in Edge} \Psi_e(y|e) \prod_{v \in V} \Psi_v(y|v)
$$
Where do Parameters Come From?

CRF’s are part of the same general class, \(P(V) \propto \Psi(V) = \prod_{c \in C} \Psi_c(V_c) \)

For trees, cliques are pairs of vertices sharing an edge \((y|_e) \), and single vertices \((y|_v) \):

\[
\Psi(V) = \prod_{e \in \text{Edge}} \Psi_e(y|_e) \prod_{v \in V} \Psi_v(y|_v)
\]

And because this is a conditional network with \(V = X \cup Y \)

\[
\Psi(Y|X) = \prod_{e \in \text{Edge}} \Psi_e(y|_e, x) \prod_{v \in V} \Psi_v(y|_v, x)
\]
Where do Parameters Come From?

CRF’s are part of the same general class, \(P(V) \propto \Psi(V) = \prod_{c \in C} \Psi_c(V_c) \)

For trees, cliques are pairs of vertices sharing an edge \((y|_e)\), and single vertices \((y|_v)\):

\[
\Psi(V) = \prod_{e \in Edge} \Psi_e(y|_e) \prod_{v \in V} \Psi_v(y|_v)
\]

And because this is a conditional network with \(V = X \cup Y \)

\[
\Psi(Y|X) = \prod_{e \in Edge} \Psi_e(y|_e,x) \prod_{v \in V} \Psi_v(y|_v,x)
\]

An exponential identity gives us

\[
\Psi(Y|X) = \exp \left(\sum_{e \in E} \log \left(\Psi_e(y|_e,x) \right) + \sum_{v \in V} \log \left(\Psi_v(y|_v,x) \right) \right)
\]
Where do Parameters Come From?

CRF’s are part of the same general class, $P(V) \propto \Psi(V) = \prod_{c \in C} \Psi_c(V_c)$

For trees, cliques are pairs of vertices sharing an edge $(y|_e)$, and single vertices $(y|_v)$:

$$
\Psi(V) = \prod_{e \in Edge} \Psi_e(y|_e) \prod_{v \in V} \Psi_v(y|_v)
$$

And because this is a conditional network with $V = X \cup Y$

$$
\Psi(Y|X) = \prod_{e \in Edge} \Psi_e(y|_e, x) \prod_{v \in V} \Psi_v(y|_v, x)
$$

An exponential identity gives us

$$
\Psi(Y|X) = \exp \left(\sum_{e \in E} \log \left(\Psi_e(y|_e, x) \right) + \sum_{v \in V} \log \left(\Psi_v(y|_v, x) \right) \right)
$$

Potentials can be ANY positive values... like linear combinations of arbitrary features

$$
\Psi(Y|X) = \exp \left(\sum_{e \in E, k \in K} \lambda_k f_k(e, y|_e, x) + \sum_{v \in V, k' \in K'} \mu_{k'} g_{k'}(v, y|_v, x) \right)
$$
Improved iterative scaling

- Want to maximize log-likelihood with respect to parameters

\[\theta = (\lambda_1, \lambda_2, \cdots; \mu_1, \mu_2, \cdots) \]
Improved iterative scaling

- Want to maximize log-likelihood with respect to parameters

\[\theta = (\lambda_1, \lambda_2, \cdots; \mu_1, \mu_2, \cdots) \]

\(^1\)Della Pietra *et al.* (1997)

Presenters: Brad Gulko and Stephanie Hyland

CS 6784 Paper Presentation
Improved iterative scaling

- Want to maximize log-likelihood with respect to parameters
 \[\theta = (\lambda_1, \lambda_2, \cdots; \mu_1, \mu_2, \cdots) \]
- Method: Improved Iterative Scaling\(^1\): Extension of Generalised Iterative Scaling (Darroch and Ratcliff 1972).
- **Improved** because features need not sum to constant.

\(^1\)Della Pietra et al. (1997)

Presenters: Brad Gulko and Stephanie Hyland

CS 6784 Paper Presentation
Improved iterative scaling

- Want to maximize log-likelihood with respect to parameters
 \[\theta = (\lambda_1, \lambda_2, \cdots ; \mu_1, \mu_2, \cdots) \]
- *Improved* because features need not sum to constant.
- Idea: new set of parameters
 \[\theta' = \theta + \delta\theta = (\lambda_1 + \delta\lambda_1, \cdots ; \mu_1 + \delta\mu_1 \cdots) \] which will not decrease objective function. Iteratively apply!

\(^1\)Della Pietra et al. (1997)
Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Improved iterative scaling

- Want to maximize log-likelihood with respect to parameters

\[\theta = (\lambda_1, \lambda_2, \cdots ; \mu_1, \mu_2, \cdots) \]

- Method: Improved Iterative Scaling\(^1\): Extension of Generalised Iterative Scaling (Darroch and Ratcliff 1972).

- *Improved* because features need not sum to constant.

- Idea: new set of parameters

\[\theta' = \theta + \delta \theta = (\lambda_1 + \delta \lambda_1, \cdots ; \mu_1 + \delta \mu_1 \cdots) \] which will not decrease objective function. Iteratively apply!

- Problem: slow, and nobody uses this any more.

\(^1\)Della Pietra et al. (1997)

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Modern CRF training - L-BFGS

- Generally use L-BFGS² algorithm.

²Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Modern CRF training - L-BFGS

- Generally use L-BFGS\(^2\) algorithm.
- Approximates Newton’s method. Optimise multivariate function \(f(\theta)\) through updates

\[
\theta_{t+1} = \theta_t - [Hf(\theta_t)]^{-1} \nabla f(\theta_t)
\]

\(^2\)Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm
Modern CRF training - L-BFGS

- Generally use L-BFGS\(^2\) algorithm.
- Approximates Newton’s method. Optimise multivariate function \(f(\theta)\) through updates

\[
\theta_{t+1} = \theta_t - [Hf(\theta_t)]^{-1} \nabla f(\theta_t)
\]

- Quasi-Newtonian: approximates Hessian \(Hf(\theta)\).

\(^2\)Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm
Modern CRF training - L-BFGS

- Generally use L-BFGS\(^2\) algorithm.
- Approximates Newton’s method. Optimise multivariate function \(f(\theta)\) through updates

\[
\theta_{t+1} = \theta_t - [Hf(\theta_t)]^{-1} \nabla f(\theta_t)
\]

- Quasi-Newtonian: approximates Hessian \(Hf(\theta)\).
- Limited-memory: doesn’t store full (approximate) Hessian.

\(^2\)Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Label bias

- Generate data with noisy HMM.
- 4-state system (not counting ‘initial state’), transitions:
 - 1 \Rightarrow 2 \Rightarrow 3
 - 4 \Rightarrow 5 \Rightarrow 3
- Emissions: highly biased!
 - \(P(X = Y’s\ preferred\ value\ |\ Y) = 29/32 \)
 - \(P(X = other\ |\ Y) = 1/32 \)
Label bias

- Generate data with noisy HMM.
- 4-state system (not counting ‘initial state’), transitions:
 - 1 \Rightarrow 2 \Rightarrow 3
 - 4 \Rightarrow 5 \Rightarrow 3
- Emissions: highly biased!
 - $P(X = Y’s$ preferred value $| Y) = 29/32$
 - $P(X = other | Y) = 1/32$
- Preferred values: 1 \rightarrow ‘r’, 4 \rightarrow ‘r’, 2 \rightarrow ‘i’, 5 \rightarrow ‘o’, 3 \rightarrow ‘b’.
- Result: CRF error 4.6%, MEMM error 42%.

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Mixed-order sources

- Generate data with mixed-order HMM:
 - Transitions: \((1 - \alpha)p_1(y_i|y_{i-1}) + \alpha p_2(y_i|y_{i-1}, y_{i-2})\)
 - Emissions: \((1 - \alpha)p_1(x_i|y_i) + \alpha p_2(x_i|y_i, x_{i-1})\)

- Five labels, 26 observation values.

- Training/testing: 1000 sequences of length 25.

- CRF trained with Algorithm S (modified IIS). MEMM trained with iterative scaling.

- Viterbi to label test set.

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Mixed-order sources: results

- Squares: $\alpha < 0.5$.

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Mixed-order sources: results

- Squares: $\alpha < 0.5$.
- CRF sort of wins?

Presenters: Brad Gulko and Stephanie Hyland

CS 6784 Paper Presentation
Part of Speech Tagging

- Penn Treebank: 45 syntactic tags, label each word in sentence.
- Train first-order HMM, MEMM, CRF.
Part of Speech Tagging

- Penn Treebank: 45 syntactic tags, label each word in sentence.

- Train first-order HMM, MEMM, CRF.

<table>
<thead>
<tr>
<th>model</th>
<th>error</th>
<th>oov error</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>5.69%</td>
<td>45.99%</td>
</tr>
<tr>
<td>MEMM</td>
<td>6.37%</td>
<td>54.61%</td>
</tr>
<tr>
<td>CRF</td>
<td>5.55%</td>
<td>48.05%</td>
</tr>
<tr>
<td>MEMM+</td>
<td>4.81%</td>
<td>26.99%</td>
</tr>
<tr>
<td>CRF+</td>
<td>4.27%</td>
<td>23.76%</td>
</tr>
</tbody>
</table>

+ Using spelling features

Presenters: Brad Gulko and Stephanie Hyland

CS 6784 Paper Presentation
Part of Speech Tagging

- Penn Treebank: 45 syntactic tags, label each word in sentence.

- Train first-order HMM, MEMM, CRF.

<table>
<thead>
<tr>
<th>model</th>
<th>error</th>
<th>oov error</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>5.69%</td>
<td>45.99%</td>
</tr>
<tr>
<td>MEMM</td>
<td>6.37%</td>
<td>54.61%</td>
</tr>
<tr>
<td>CRF</td>
<td>5.55%</td>
<td>48.05%</td>
</tr>
<tr>
<td>MEMM+</td>
<td>4.81%</td>
<td>26.99%</td>
</tr>
<tr>
<td>CRF+</td>
<td>4.27%</td>
<td>23.76%</td>
</tr>
</tbody>
</table>

- Spelling features exploit conditional framework.

- Examples: starts with number/upper case?, contains hyphen, has suffix?

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Skip-chain CRF

- Example: skip-chain CRF\(^3\).

Skip-chain CRF

- Example: skip-chain CRF\(^3\).
- Has long-range features!

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Skip-chain CRF

- Example: skip-chain CRF3.
- Has long-range features!
- Basic idea: extend linear-chain CRF by joining some distant observations with ‘skip edges’.

Skip-chain CRF

- Example: skip-chain CRF\(^3\).
- Has long-range features!
- Basic idea: extend linear-chain CRF by joining some distant observations with ‘skip edges’.
- Connect multiple mentions of entity across whole document.

Example: Note: Squares denote factors (e.g. potential functions).

Skip-chain CRF

X5 Mr Y5
X6 Smith Y6
X7 is Y7
X8 here. Y8
X9 Smith Y9
X10 says

Question: Ignoring the skip edges (in blue), what potentials does Y_i appear in?

Answer: $(Y_i, Y_{i-1}, X_i), (Y_{i+1}, Y_i, X_{i+1})$.
Example: Note: Squares denote factors (e.g. potential functions).

Question: Ignoring the skip edges (in blue), what potentials does Y_i appear in?

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Example: Note: Squares denote factors (e.g. potential functions).

Question: Ignoring the skip edges (in blue), what potentials does Y_i appear in?
Answer: $\psi(Y_i, Y_{i-1}, X_i), \psi(Y_{i+1}, Y_i, X_{i+1})$.

Presenters: Brad Gulko and Stephanie Hyland
CS 6784 Paper Presentation
Skip-chain CRF

Skip-chain task

- Data: 485 email announcements for seminars at CMU.
Skip-chain task

- Data: 485 email announcements for seminars at CMU.
- Task: identify start time, end time, location, speaker.
Skip-chain task

- Data: 485 email announcements for seminars at CMU.
- Task: identify start time, end time, location, speaker.
- Linear chain CRF with skip edges between identical capitalised words.
Skip-chain task

- Data: 485 email announcements for seminars at CMU.
- Task: identify start time, end time, location, speaker.
- Linear chain CRF with skip edges between identical capitalised words.
- Other word-specific features e.g. ‘appears in list of first names’, ‘upper case’, ‘appears to be part of time/date’ (by regex), etc.
Skip-chain results

<table>
<thead>
<tr>
<th>System</th>
<th>stime</th>
<th>etime</th>
<th>location</th>
<th>speaker</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN Peshkin and Pfeffer [2003]</td>
<td>96.0</td>
<td>98.8</td>
<td>87.1</td>
<td>76.9</td>
<td>89.7</td>
</tr>
<tr>
<td>Linear-chain CRF</td>
<td>97.5</td>
<td>97.5</td>
<td>88.3</td>
<td>77.3</td>
<td>90.2</td>
</tr>
<tr>
<td>Skip-chain CRF</td>
<td>96.7</td>
<td>97.2</td>
<td>88.1</td>
<td>80.4</td>
<td>90.6</td>
</tr>
</tbody>
</table>

- Values are F1 scores.
Skip-chain results

<table>
<thead>
<tr>
<th>System</th>
<th>stime</th>
<th>etime</th>
<th>location</th>
<th>speaker</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN Peshkin and Pfeffer [2003]</td>
<td>96.0</td>
<td>98.8</td>
<td>87.1</td>
<td>76.9</td>
<td>89.7</td>
</tr>
<tr>
<td>Linear-chain CRF</td>
<td>97.5</td>
<td>97.5</td>
<td>88.3</td>
<td>77.3</td>
<td>90.2</td>
</tr>
<tr>
<td>Skip-chain CRF</td>
<td>96.7</td>
<td>97.2</td>
<td>88.1</td>
<td>80.4</td>
<td>90.6</td>
</tr>
</tbody>
</table>

- Values are F1 scores.
- Repeated occurrences of speaker improve skip-chain performance.
Skip-chain results

<table>
<thead>
<tr>
<th>System</th>
<th>stime</th>
<th>etime</th>
<th>location</th>
<th>speaker</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN Peshkin and Pfeffer [2003]</td>
<td>96.0</td>
<td>98.8</td>
<td>87.1</td>
<td>76.9</td>
<td>89.7</td>
</tr>
<tr>
<td>Linear-chain CRF</td>
<td>97.5</td>
<td>97.5</td>
<td>88.3</td>
<td>77.3</td>
<td>90.2</td>
</tr>
<tr>
<td>Skip-chain CRF</td>
<td>96.7</td>
<td>97.2</td>
<td>88.1</td>
<td>80.4</td>
<td>90.6</td>
</tr>
</tbody>
</table>

- Values are F1 scores.
- Repeated occurrences of speaker improve skip-chain performance.
- Tokens are *consistently* classified by skip-chain. Linear-chain is inconsistent on 30.2 speakers, skip-chain: 4.8.
Summary

- CRFs combine *discriminative* (e.g. MEMM) and *undirected* (e.g. MRF) properties to solve problems:
Summary

- CRFs combine *discriminative* (e.g. MEMM) and *undirected* (e.g. MRF) properties to solve problems:
 - Global normalisation avoids label bias.
Summary

- CRFs combine *discriminative* (e.g. MEMM) and *undirected* (e.g. MRF) properties to solve problems:
 - Global normalisation avoids label bias.
 - Conditioning on observations avoids modelling complex dependencies.
Summary

- CRFs combine *discriminative* (e.g. MEMM) and *undirected* (e.g. MRF) properties to solve problems:
 - Global normalisation avoids label bias.
 - Conditioning on observations avoids modelling complex dependencies.
 - Enables use of features using global structure.
Summary

- CRFs combine *discriminative* (e.g. MEMM) and *undirected* (e.g. MRF) properties to solve problems:
 - Global normalisation avoids label bias.
 - Conditioning on observations avoids modelling complex dependencies.
 - Enables use of features using global structure.

- Examples in paper strangely insubstantial, but CRFs are widely and successfully used.