LEARNING USER INTERACTION MODELS FOR PREDICTING WEB SEARCH PREFERENCES

Eugene Agichtein
Eric Brill
Susan Dumais
Robert Rango
Microsoft Research

Jacob Bank and Christie Brandt

Predicting User Preferences

- Many successful supervised ranking methods...
- ...but they require labeled data
 - (e.g., pairwise preferences)

Problem: getting labeled data

- Explicit human ratings:
 - Expensive
 - Difficult to obtain
 - No effective way of getting explicit user feedback
- User interaction history:
 - "free" implicit feedback—millions each day
 - Click patterns, dwell time, mouse movement
- ...but how to model as pairwise preferences?

Implicitly Labeled Data

- Experiments with implicit ratings:
 - controlled text collections
 - selected queries/tasks
 - laboratory settings
- Real web:
 - Uncontrolled
 - Ill-defined queries/tasks
 - Automated bots
 - Noisy, non-expert users
 - Malicious
 - Irrational

Main Questions

- Can explicitly accounting for "noisy" users provide more information?
- Can we automatically learn accurate user feedback interpretation models by representing user actions as a rich set of features?

Noisy Users

- Users click on non-relevant documents due to:
 - Visual appearance/layout
 - User history/context
 - Presentation order (position)

(PTR: Position of Top Relevant Document)
Modeling Noisy Users

- 2 components to user behavior
- Relevance component
 - Query-specific user reaction
 - Based on perceived true relevance of documents
- Background component:
 - Users clicking indiscriminately

Calculating Background

- Calculate aggregated click frequency at position p:
 - Compute frequency of a click at p for each query q:
 - (How often would a random click for query q land on p?)
 - Average frequencies across all queries:
 \[
 C(p) = \frac{1}{\# \text{queries}} \sum_{q} \frac{\# \text{clicks at } p}{\# \text{clicks in } q}
 \]

Finding Relevance

- Find the expected behavior for each position over full dataset, and subtract it to get true relevance

Click Deviation

- Relevance: deviation from “expected behavior” at position p
 \[
 dev(r, p) = obs(r, p) - C(p)
 \]

Model 1: CD (Click Deviation)

- Filter out noisy clicks, then apply SA or SA+N strategies
 - For each result r_i at position p_i:
 - Given a parameter d:
 - If $dev(r_i, p_i) > d$:
 - Retain click as input for SA or SA+N strategies

Example: CD (Click Deviation)
Example: CD (Click Deviation)

- For a clicked result at position p:
 - **SA (Skip Above):** for all unclicked results $i < p$, \(\text{relevance}(p) > \text{relevance}(i) \)
 - **N (Skip Next):** if the result $p+1$ is unclicked, \(\text{relevance}(p) > \text{relevance}(p+1) \)
 - **SA+N:** combine both strategies

Example: Cdiff (Click Difference)

\[
\text{dev}(r, p) = \text{dev}(r, p) - \text{dev}(r', p') > m \Rightarrow \text{rel}(r) > \text{rel}(r')
\]

- Idea: when two results are compared, a result is “skipped” if it is clicked less than expected, “clicked” if more than expected.
- For each query q, calculate the deviation for each result-position pair
 - Compare every (r, p) pair against every other:
 \[
 \text{dev}(r, p) - \text{dev}(r', p') > m \Rightarrow \text{rel}(r) > \text{rel}(r')
 \]
 - Ignores positional information
 - Can compare events when both results clicked
 - Informational versus navigational queries

Precision/Recall Parameters

- d and m: tradeoff between precision and recall:
 - d, m large: higher precision, lower recall
 - d, m small: lower precision, higher recall

Beyond Clickthrough: General User Behavior Model

- Large set of features to represent user behavior before and after the click
- Automatically derive implicit feedback interpretation

Background: Richer Feature Set

- Time users spent reading Usenet news articles predicts user interest [Morita and Shinoda 1994]
- Page activity correlates with reader interest [Goecks and Shavlik 1999]
 - (small sample size, no testing against explicit measurements)
- Curious Browser—combined implicit measurements with explicit queries [Claypool et al. 2001]
 - Time spent on page + scrolling correlated with interest
 - Individual scrolling/mouse-clicks not correlated
- Rich (but query-independent) feature set: clickthrough most important, but adding dwell time improved accuracy [Fox et al. 2005]
General User Behavior Model

- Represent user actions as features—rich feature set
- Query-specific model (behavior deviates with query)
- Capture actions before and after query
 - Observed: relate directly to query/result pair
 - Distributional: deviations from “expected” behavior
 - Derived—measure deviation of feature for given search result from expected value for any result.

User Behavior Model

\[f : feature \]
\[r : result \]
\[q : query \]

\[\text{obs}(q, r, f) = C(f) + \text{rel}(q, r, f) \]

Observed value of a feature with respect to result \(r \) and query \(q \)

Features

- Query-text: text-based relations between query and document
 - Query length
 - Title overlap, Summary overlap, Domain overlap

Features

- Query-text: text-based relations between query and document
 - Clickthrough: frequency, timing, order of clicks
 - Browsing: user behavior after click (intra-query diversity of page browsing)

Features

- Query-text: text-based relations between query and document
 - Clickthrough: frequency, timing, order of clicks
 - Browsing: user behavior after click (intra-query diversity of page browsing)

Features

- Query-text: text-based relations between query and document
 - Clickthrough: frequency, timing, order of clicks

Learning User Behavior

- RankNet
 - Efficient
 - Scalable
 - Robust

- Train on pairs \((r1, r2)\)
 - Output: 1 if \(r1 > r2 \), 0 otherwise

- Explicit boolean relevance judgments
- Gradient descent (multiple restarts) to set weights
Evaluation Metrics

- Evaluate based on pairwise agreement
- Query precision:
 \[
 \frac{\#(\text{predicted} = \text{human judgement})}{\#(\text{predicted})}
 \]
- Query recall:
 \[
 \frac{\#(\text{predicted} = \text{human judgement})}{\#(\text{human judgement})}
 \]

Datasets

- “Orders of magnitude larger than any study yet reported in the literature”
- Explicit pairwise relevance judgements for top-10 results
- Q1: at least 1 click for each query
 - (3500 queries, 28,093 query-URL pairs)
- Q10: at least 10 clicks
 - (1300 queries, 18,728 query-URL pairs)
- Q20: at least 20 clicks
 - (1000 queries, 12,922 query-URL pairs)
- Training/test for UB: train/validate on 75%, test on 25% (no query overlap)

Strategies Compared

- Current:
 - a "state-of-the-art" ranking system from "a major websearch engine"
- SA
- SA+N
- CD
- CDiff
- CDiff+CD
- UserBehavior

Results: User Behavior Model Features

- Browsing features outperform combinations
- Query-text features by themselves perform badly

Results: adding more data

- Intelligent aggregation of large amounts of data improves precision (higher recall permitted)

Results: Q1 (at least 1 click)
Results

- Targeting divergent access patterns (clustering)
- Modeling time-dependency of query distributions
- Automatically finding “reliable users”

Conclusions

- Explicitly accounting for “noisy” user behavior greatly improves accuracy
- New model presented which represents user actions as a rich set of features based on actions before and after search
- More extensive feature-based characterization of user behavior: dramatic improvement in accuracy over human-defined heuristics

Questions?