Apprenticeship Learning via Inverse Reinforcement Learning
Pieter Abbeel and Andrew Y. Ng [ICML 2004]

CS 6784
March 9, 2010
(Presented by Dane & Vasu)

Markov Decision Processes
- Used for modeling sequential decision problems.
- Set of states S
- Set of available actions A.
- Transition probabilities $P_{s,a}$
 - Give probabilities for arriving in a new state after performing action a while in state s.
- Reward functions $R(s)$
 - The ‘value’ of being in state s. Assume to be bounded in the absolute value by 1.

Example

Gridworld
- States given by grid cells
 - Additionally, specified start and end states
- At each cell, action is given by direction of movement
- Transition follows the specified action with 80% probability, else move to an adjacent cell randomly
- A transition to a given cell is accompanied by an immediate reward
- A policy maps each state to an action

Policies
- π gives a function from states to distributions over actions.
- The value of a policy is given by:
 \[
 E_{w\sim n}[\gamma^t(s_t) - E_{s\sim \pi}^\infty \gamma^t R(s_t)] = w \cdot E_{s\sim \pi}^\infty \gamma^t \cdot \phi(s_t) \cdot \pi
 \]
- D gives the distribution of starting states
- γ is a discount factor – earlier rewards are given more weight.

Computing Optimal Policies
- Reinforcement Learning
 - For instance, Q-learning
- $Q: S \times A \to \mathbb{R}$ is a function that gives the ‘quality’ of an action from a certain state
- The agent uses Q to explore the state space, and updates the function at each transition based on the experienced reward
- We know the reward function $R(s)$, but not the transition probabilities.

The Problem
- It is often difficult to specify the reward function, even if you are capable of making good decisions.
- E.g. You might be a perfectly good driver, but describing a reward function for good driving isn't so obvious.
- The solution: Apprenticeship learning.
 - Observe expert behavior, and assuming their actions to be optimal, derive the reward function.
Assumptions

- There is some feature vector over states \(\phi: S \rightarrow [0,1]^k \)
- The unknown reward function \(R(s) \) can be given by \(w^T \phi(s) \) for some \(w \in \mathbb{R}^k, \|w\|_1 \leq 1 \)

The Expert

- We have access to some expert policy \(\pi_E \)
- More accurately, we have examples of state sequences generated by said policy.
- We are also able to estimate the feature expectations \(\mu_E \)
 - Given a set of \(m \) state sequences \(s^1, s^2, \ldots, s^m \)
 - Calculate an estimate:
 \[
 \hat{\mu}_E = \frac{1}{m} \sum_{i=0}^{m} \sum_{t=0}^{\infty} \gamma^t \phi(s^i_t)
 \]

Algorithm (max-margin)

- Given an MDP, a feature mapping \(\phi \) and the expert’s feature expectations \(\mu_E \), find a policy whose performance is close to that of the expert’s, on the unknown reward function \(R^* = w^T \phi \).
- To accomplish this, we find a policy that induces feature expectations close to the expert policy.

Algorithm Termination

- Algorithm terminates with \(t \leq \varepsilon \). For any \(w \) (and in particular the expert’s \(w_E \)) there is at least one \(w \) whose performance under \(R^* \) is at least as good as the expert’s performance minus \(\varepsilon \).
- Ask the agent designer to manually test/examine the policies found by the algorithm, and pick one with acceptable performance.
- OR, solve: \(\arg \min \sum \lambda \mu \geq \sum \lambda \mu^i + \varepsilon \) and check if all \(w \) are within \(\varepsilon \) of \(w_E \).
- Note: the algorithm does not necessarily recover the underlying reward function correctly – it only (approximately) matches the feature expectations.

Compare with Structural SVM

\[
\arg \min \frac{1}{2} w^T \Sigma w + C \sum \xi \quad \forall \forall i j, w^T \phi(x_i, y_i) \geq w^T \phi(x_j, \hat{y}_j) + 1 - \frac{\xi}{\Delta(y_i, \hat{y}_j)}
\]

SVM Training examples:
\(\{(x_i, y_i), \ldots, (x_n, y_n)\} \)

IRL (iteration)

Constraints:
\(\forall \forall i j, w^T \phi(x_i, y_i) \geq w^T \phi(x_j, \hat{y}_j) + 1 - \frac{\xi}{\Delta(y_i, \hat{y}_j)} \)

\[
\min \sum \mu \geq \sum w^T \mu + \varepsilon
\]
Projection Method

- Instead of keeping all prior feature expectations, just look at the most recent expectations, and an orthogonal projection of the expert expectations
 - Set $\hat{\mu}^{(t-1)} = \hat{\mu}^{(t-2)} + \frac{(\hat{\mu}^{(t-1)} - \hat{\mu}^{(t-2)})^T (\hat{\mu}^{(t-1)} - \hat{\mu}^{(t-2)})}{(\hat{\mu}^{(t-1)} - \hat{\mu}^{(t-2)})^T (\mu_E - \hat{\mu}^{(t-2)})} (\mu_E - \hat{\mu}^{(t-2)})$
 - Set $w^{(t)} = \mu_E - \hat{\mu}^{(t-1)}$

- We no longer have to solve a QP, so no SVMs here.
 - In case you’re just not an SVM kind of guy/gal.

Experimental Results

- Projection method converges slightly faster than max-margin
- In general, IRL performs better than more naïve alternatives even with a small amount of training data

Conclusions

- Assumed access to demonstrations by an expert maximizing a reward function linear in known features
 - (How reasonable is this? Quite, for rich feature spaces.)
- Algorithm based on inverse reinforcement learning
 - Terminates in a small number of iterations
 - Guarantees policy with performance comparable to or better than expert on the expert’s unknown reward function (but without recovering the reward function!)
- Open problems:
 - Non-linear reward functions
 - Automatic feature construction and feature selection

More Results

- Gridworld:
 - Projection method converges slightly faster than max-margin
 - In general, IRL performs better than more naïve alternatives even with a small amount of training data

Driving task:

- (Please turn off your cell phones during the movie)