Kernel Dependency Estimation
Presented by Alex Ainslie | Advanced Machine Learning | CS 6784 | February 18, 2010

Motivation

- Learning problem
- Find a dependency between a general class of objects and another
- Relies on kernel functions because it uses similarity measures in both input and output spaces
- Encodes complex costs and outputs

Learning

- Inputs $x \in \mathcal{X}$
- Outputs $y \in \mathcal{Y}$
- Learn the function $f(x, \alpha^*)$
- Minimum value of risk function

$$R(\alpha) = \int_{\mathcal{X} \times \mathcal{Y}} L(y, f(x, \alpha))dP(x, y)$$

- Requires a priori knowledge of similarity measure (the loss function for outputs)

Complex Cost

- This loss function can be simple:
 - pattern recognition (zero-one loss)
 - regression (squared loss)
- or more complicated:
 - mapping to images
 - mixture of drugs

Kernel Functions

- A kernel k is:
 - a symmetric function
 - an inner product in some Hilbert space \mathcal{F}
 (same class: high, different class: low)
 $\Phi_k : \mathcal{X} \rightarrow \mathcal{F}$ such that $k(x, x') = (\Phi_k(x) \cdot \Phi_k(x'))$
- EX: $k(x, x') = (x \cdot x' + 1)^p$

Kernel Examples

- M-class pattern recognition
 $\ell_{\text{pat}}(y, y') = \frac{1}{2} |y - y'|$
 $\Phi_k(y) = (0, 0, \ldots, 0, \frac{x_{i1}^2, \ldots, 0}$ where the y^{th} coordinate is nonzero
- Regression estimation
 $\ell_{\text{reg}}(y, y') = (y - y')$
- Strings
 $\ell(s, t) = \sum_{u \in \Sigma^r} \sum_{w \in \Sigma^{|x|}} \chi^{(i)}(u) \chi^{(j)}(w)$
 exponential decay

Σ ordered subsequences of length r
Algorithm (KDE)

- Minimize the risk function using the feature space \(F \) induced by the kernel \(k \) and the loss function measured in the space \(L \) induced by the kernel \(l \)
- Decomposition of outputs
- Learning the map
- Solving the pre-image

Decompose

- Construct kernel matrix \(L \) on training data
- Perform kernel PCA
 \[L' = (I - \frac{1}{m}1_m1_m^T)L(I - \frac{1}{m}1_m1_m^T) \]
 \(n^{th} \) principal component
 \[(\psi^n \cdot \Phi(x)) = \sum_{i=1}^{m} \alpha_i^n \Phi_i(x) \]
 \((\psi^n \cdot \Phi_{\ell}(y)) = \sum_{i=1}^{m} \alpha_i^n \ell(y_i, y) \).

Map

- Using the \(p \) principal components
- Perform kernel ridge regression
- Estimator:
 \[f_{\beta}(x) = \sum_{i=1}^{m} \beta_i k(x_i, x), \quad \beta = (K + \gamma I)^{-1} \psi^n \]

Pre-Image

- During testing to find estimate for \(y \) for a given \(x \), we need the pre-image \(\Phi(x) \)
 \[y(x) = \text{argmin}_{y \in Y} ||(\psi \cdot \Phi(y), \ldots, \psi \cdot \Phi(y)) - (f_1(x), \ldots, f_p(x))|| \]

Experiment: Images

- USPS handwritten 16 pixel digit database
- Classification

<table>
<thead>
<tr>
<th>Method</th>
<th>RBF classification loss</th>
<th>k-NN classification loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDE</td>
<td>0.0878 ± 0.0067</td>
<td>0.1847 ± 0.0064</td>
</tr>
<tr>
<td>k-NN</td>
<td>0.1293 ± 0.0075</td>
<td>0.0805 ± 0.0072</td>
</tr>
</tbody>
</table>

Experiment: Images

- Image Reconstruction
- Estimate using first 8 rows
KDE Mistakes

Original, KDE, KNN

KNN Mistakes

Original, KDE, KNN

Toy Problem: Strings

- Predict output string from input string
- Almost classification with three classes

<table>
<thead>
<tr>
<th>input string</th>
<th>output string</th>
<th>KDE</th>
<th>4-NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>cecececececececece</td>
<td>aabe</td>
<td>0.070 ± 0.030</td>
<td>0.085 ± 0.029</td>
</tr>
<tr>
<td>dcecececececececece</td>
<td>abc</td>
<td>0.125 ± 0.012</td>
<td>0.205 ± 0.026</td>
</tr>
<tr>
<td>addcddddddddddd</td>
<td>bb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bbdddddddbddbd</td>
<td>aebad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cdeccacacedddcdd</td>
<td>abad</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

String Subsequence Kernel

- Compare text documents by substrings (not necessarily contiguous) \(\lambda \in (0,1) \)
- c-a-r is in card and custard
- Used for both inputs and outputs

KNN Mistakes

Original, KDE, KNN

Toy Problem: Strings

- Alphabet (a,b,c,d)
- Input: random length (10 -15)
- Three classes of strings
 - transitions equally likely : abad
 - 0.7 repeat, 0.1 other : dbbd
 - 0.7 repeat, 0.1 other, only c,d : aabc
- Outputs corrupted with noise

String Subsequence Kernel

- Compare text documents by substrings (not necessarily contiguous) \(\lambda \in (0,1) \)
- c-a-r is in card and custard
- Used for both inputs and outputs

Toy Problem: Strings

- cat, car, bat, bar \(\lambda = 0.01 \)
- ca, ct, at, ca, cr, ar, ba, bt, at, ba, br, ar

\[
\begin{align*}
\phi(\text{cat}) & = \lambda^2 \\
\phi(\text{car}) & = \lambda^2 \\
\phi(\text{bat}) & = \lambda^2
\end{align*}
\]

\[
K(\text{car}, \text{cat}) = \lambda^4
\]
Toy Problem: Strings

\[k(x, x') = k(x, x')/(\sqrt{k(x, x)} \sqrt{k(x', x')}) \exp\left(-k(x, x) + k(x', x') - 2k(x, x')/2\sigma^2\right) \]

- Find this distance (similarity) measure for each pair in inputs and outputs
- Then using kernel ridge regression to finding a mapping
- Pre-image: closest training example output to the given solution

Image: Joachims, SIGIR03 Tutorial Slides

Kernel Dependency Estimation

Presented by Alex Ainslie | Advanced Machine Learning | CS 6784 | February 18, 2010