Machine Learning Theory (CS 6783)

1 Two Equivalent Definitions of Convexity

For this section, say \mathcal{B} is some vector space equipped with norm $\|\cdot\|$ and \mathcal{B}^{*} be the dual space equipped with dual norm $\|\cdot\|_{*}$. For simplicity think of \mathcal{B} and \mathcal{B}^{*} to simply be \mathbb{R}^{d}. The following are two equivalent definitions of convex functions.

Definition 1. A function $f: \mathcal{B} \mapsto \mathbb{R}$ is said to be convex if for all $x, y \in \mathcal{B}$ and any $\alpha \in[0,1]$,

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

The following is an equivalent definition in terms of gradients.
Definition 2. A function $f: \mathcal{B} \mapsto \mathbb{R}$ is said to be convex if for all $x, y \in \mathcal{B}$

$$
f(x) \leq f(y)+\langle\nabla f(x), x-y\rangle
$$

Why are the two definitions equivalent?
$(\mathbf{1} \Rightarrow \mathbf{2}) \quad$ First lets show that the first definition implies the second. Note that by definition of directional derivative:

$$
\begin{aligned}
\langle\nabla f(x), y-x\rangle & =\lim _{\alpha \rightarrow 0} \frac{f(x+\alpha(y-x))-f(x)}{\alpha} \\
& =\lim _{\alpha \rightarrow 0} \frac{f((1-\alpha) x+\alpha y))-f(x)}{\alpha} \\
& \leq \lim _{\alpha \rightarrow 0} \frac{(1-\alpha) f(x)+\alpha f(y)-f(x)}{\alpha} \\
& =\lim _{\alpha \rightarrow 0} \frac{\alpha(f(y)-f(x))}{\alpha} \\
& =f(y)-f(x)
\end{aligned}
$$

Rearranging we see that definition 1 implies definition 2.
$(\mathbf{2} \Rightarrow \mathbf{1})$ Now to prove the other direction, starting with definition 2 , we have the following two inequalities:

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & \leq f(x)+\langle\nabla f(\alpha x+(1-\alpha) y), \alpha x+(1-\alpha) y-x\rangle \\
& =f(x)+(1-\alpha)\langle\nabla f(\alpha x+(1-\alpha) y), y-x\rangle
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & \leq f(y)+\langle\nabla f(\alpha x+(1-\alpha) y), \alpha x+(1-\alpha) y-y\rangle \\
& =f(y)+\alpha\langle\nabla f(\alpha x+(1-\alpha) y), y-x\rangle
\end{aligned}
$$

Hence summing up α times the first inequality and $1-\alpha$ times the second we end up with

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)+(1-\alpha) \alpha\langle\nabla f(\alpha x+(1-\alpha) y), y-x\rangle+
$$

$\operatorname{alpha}(1-\alpha)\langle\nabla f(\alpha x+(1-\alpha) y), x-y\rangle$

$$
=\alpha f(x)+(1-\alpha) f(y)
$$

This completes the proof.

