
Machine Learning Theory (CS 6783)

Lecture 8: Covering Numbers

1 Covering Numbers

We already saw how to bound Rademacher Complexity in the cases where F is a finite set of
mappings. We are often interested in infinite F . To this end, we will use the notion of covering
to bound Rademacher complexity. At a high level, the idea of covering is to approximate F by a
finite family. Recall that the Sequential Rademacher complexity is defined as:

Rn(F) :=
1

n
Eε

[
sup
f∈F

n∑
t=1

εtf(ε1:t−1)

]

To understand the notion of cover, let us first start with a simple example. Say we have a family
of 2n−1 functions indexed by ε1:n−1 ∈ {±1}n−1 as follows. F = {fε1:n−1 : ε1:n−1 ∈ {±1}n−1} where
fε1:n−1(ε1:t−1) = 0 for any ε1:t−1 6= ε1:n−1 and fε1:n−1(ε1:n−1) = 1. That is, fε1:n−1 evaluates to a 1
only on ε1:n−1 and 0 for any other input. Clearly |F| = 2n−1. But the claim is that for the purpose
of Rademacher complexity, we can cover this class of mappings with just two functions, given by
F = {f1, f2} where f1 is the constant 0 function and f2 is a mapping such that for any t < n− 1,
f2(ε1:t) = 0 and f2(ε1:n−1) = 1. That is, f2 is 0 for any input of length less than n − 1 and is +1
on any input of length n− 1. Now note that:

Rn(F) :=
1

n
Eε

[
max
f∈F

n∑
t=1

εtf(ε1:t−1)

]
=

1

n
Eε

[
max
f∈F

n∑
t=1

εtf(ε1:t−1)

]
= Rn(F)

Clearly, using the finite bound on F yields a way better bound.
Inspired by this observation let us define the notion of cover and covering numbers.

Definition 1. V ⊂ R
⋃n

t=1{±1}t−1
is an `p cover of F ⊂ R

⋃n
t=1{±1}t−1

at scale β > 0 if, for every
ε ∈ {±1}n and for all f ∈ F , there exists vf,ε ∈ V such that(

1

n

n∑
t=1

|f(ε1:t−1)− vf,ε(ε1:t−1)|p
)1/p

≤ β

Covering number is then defined as:

Np(F , β) = min{|V | : V is an `p cover of F at scale β}

To give you a picture, consider the classic Rademacher complexity case. You can think of
V ⊂ Rn as a finite discretization of F ⊂ Rn to scale β in the normalize `p distance as shown in Figure
below. It can easily be verified that for any p, p′ ∈ [1,∞) such that p′ ≤ p, Np′(F , β) ≤ Np(F , β).
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2 Pollard’s bounds

Lemma 1. For any mapping F ⊂ R
⋃n

t=1{±1}t−1
,

Rn(F) ≤ inf
β≥0

{
β +

√
2 logN1(F , β)

n

}
Proof. Let V be any `1 cover of F at scale β to be set later.

1

n
Eε

[
sup
f∈F

n∑
t=1

εtf(ε1:t−1)

]
=

1

n
Eε

[
sup
f∈F

n∑
t=1

εt (f(ε1:t−1)− vf,ε(ε1:t−1)) + εtvf,ε(ε1:t−1)

]

≤ 1

n
Eε

[
sup
f∈F

n∑
t=1

εt (f(ε1:t−1)− vf,ε(ε1:t−1))

]
+

1

n
Eε

[
sup
f∈F

n∑
t=1

εtvf,ε(ε1:t−1)

]

≤ 1

n
Eε

[
sup
f∈F

n∑
t=1

εt (f(ε1:t−1)− vf,ε(ε1:t−1))

]
+

1

n
Eε

[
sup
v∈V

n∑
t=1

εtv(ε1:t−1)

]

≤ 1

n
sup
f∈F

n∑
t=1

|f(ε1:t−1)− vf,ε(ε1:t−1)|+
1

n
Eε

[
sup
v∈V

n∑
t=1

εtv(ε1:t−1)

]

≤ β +

√
2 log V

n

Since above statement holds for any cover V , we have

1

n
Eε

[
sup
f∈F

n∑
t=1

εtf(xt)

]
≤ β +

√
2 logN1(F , β)

n

Since above statement holds for all β we have,

1

n
Eε

[
sup
f∈F

n∑
t=1

εtf(xt)

]
≤ inf

β≥0

{
β +

√
2 logN1(F , β, x1, . . . , xn)

n

}

2



Example : Classical Rademacher complexity on Non-decreasing functions mapping to
Y = [0, 1]
Discretize Y = [−1, 1] to β granularity as bins [0, β], [β, 2β], . . . , [1−β, 1]. There are 1/β bins. Now
f1, . . . , fn are in ascending order. Any non-decreasing function can be approximated to accuracy β
(even in the `∞ metric) as is shown in the figure below.

What is the size of this cover?
One possible approach to bound the size of the cover could be to note that there are n points and
each can fall in one of 1/β bins. However this would be too loose and lead to covering number
1/βn which does not yield any useful bounds. Alternatively, to describe any element of the cover,
all we need to do is to specify for each grid/bin on the y axis, the smallest index i at which the
fi is larger than the upper end of the bin. One can think of this smallest index as a break-point
in the cover for the specific function. Now to bound the size of the cover, note that there are 1/β
bins and each bin can have a break-point that is one of the n indices. Thus the total size of the
cover is n1/β. This is illustrated in the figure below. Hence we have,

N∞(F , β) ≤ n1/β

If we use this with the Pollard’s bounds we get :

R̂ ≤ inf
β≥0

{
β +

√
2 log n

nβ

}
= 2

(
2 log n

n

)1/3

3 Dudley Chaining

Lemma 2. For any function class F bounded by 1,

R̂S(F) ≤ inf
α≥0

{
4α+

10√
n

∫ 1

α

√
log (N2(F , δ))dδ

}
=: DS(F)
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Proof. Let V j be an `2 cover of F at scale βj = 2−j . We assume that Vj is the minimal cover so
that |V j | = N2(F , βj). Note that since the function class is bounded by 1, the singleton set

V 0 =

{
n⋃
t=1

{±1}t−1 7→ 0

}

is a cover at scale 1. Now further, for any f ∈ F let vjf correspond to the element in V j that is
βj close to f on the sample in the normalized `2 sense. Such element is guaranteed to exist by
definition of the cover. Now note that by telescoping sum,

f(ε1:t−1) = f(ε1:t−1)− v0
f (ε1:t−1) =

(
f(ε1:t−1)− vNf (ε1:t−1)

)
+

N∑
j=1

(
vjf (ε1:t−1)− vj−1f (ε1:t−1)

)
Hence we have that,

1

n
Eε

[
sup
f∈F

n∑
t=1

εtf(ε1:t−1)

]

=
1

n
Eε

sup
f∈F

n∑
t=1

εt
(
f(ε1:t−1)− vNf,ε(ε1:t−1)

)
+ εt

N∑
j=1

(
vjf,ε(ε1:t−1)− vj−1f (ε1:t−1)

)
≤ 1

n
Eε

[
sup
f∈F

n∑
t=1

εt
(
f(ε1:t−1)− vNf,ε(ε1:t−1)

)]
+

1

n
Eε

sup
f∈F

N∑
j=1

n∑
t=1

εt

(
vjf,ε(ε1:t−1)− vj−1f,ε (ε1:t−1)

)
Using Cauchy Shwartz inequality on the first of the two terms above,

≤ 1

n
Eε

√√√√ n∑
t=1

ε2t

√√√√sup
f∈F

n∑
t=1

(
f(ε1:t−1)− vNf,ε(ε1:t−1)

)2
+

1

n
Eε

sup
f∈F

N∑
j=1

n∑
t=1

εt

(
vjf,ε(ε1:t−1)− vj−1f,ε (ε1:t−1)

)
= sup

f∈F

√√√√ 1

n

n∑
t=1

(
f(ε1:t−1)− vNf,ε(ε1:t−1)

)2
+

1

n
Eε

sup
f∈F

N∑
j=0

n∑
t=1

εt

(
vjf,ε(ε1:t−1)− vj−1f,ε (ε1:t−1)

)
≤ βN +

1

n

N∑
j=1

Eε

[
sup
f∈F

n∑
t=1

εt

(
vjf,ε(ε1:t−1)− vj−1f,ε (ε1:t−1)

)]

where the last step we replaced the first term by βN since vNf,ε is the element that is βN close to f

in the normalized `2 sense. Now define set W j ⊂ R
⋃n

t=1{±1}t−1
as

W j =
{

wf,ε(ε1:t−1) = vjf,ε(ε1:t−1)− vj−1f,ε (ε1:t−1), and 0 otherwise : f ∈ F , ε ∈ {±1}n
}

That is each wf,ε evaluates to vjf,ε−vj−1f,ε when input is a subsequence of ε and is 0 otherwise.Note

that |W j | ≤ |V j | × |V j−1|, since each element in Wj is the difference between one element in V j
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and one from V j−1. Therefore :

1

n
Eε

[
sup
f∈F

n∑
t=1

εtf(ε1:t−1)

]

≤ βN +
1

n

N∑
j=1

Eε

[
sup

w∈Wj

n∑
t=1

εtw(ε1:t−1)

]

Using Masart’s finite lemma, we have

≤ βN +
1

n

N∑
j=1

√√√√2

(
max

w∈W j ,ε∈{±1}n

n∑
t=1

w(ε1:t−1)2

)
log (|W j |)

≤ βN +
1

n

N∑
j=1

√√√√2

(
max

f∈F ,ε∈{±1}n

n∑
t=1

(vjf,ε(ε1:t−1)− vj−1f,ε (ε1:t−1))2

)
log ((|V j | × |V j−1|)

= βN +
1

n

N∑
j=1

√√√√2

(
max

f∈F ,ε∈{±1}n

n∑
t=1

(vjf,ε(ε1:t−1)− f(ε1:t−1) + f(ε1:t−1)− vj−1f,ε (ε1:t−1))2

)
log ((|V j | × |V j−1|)

≤ βN +
1

n

N∑
j=1

√√√√4

(
max

f∈F ,ε∈{±1}n

n∑
t=1

(vjf,ε(ε1:t−1)− f(ε1:t−1))2 + (f(ε1:t−1)− vj−1f,ε (ε1:t−1))2

)
log ((|V j | × |V j−1|)

≤ βN +
1

n

N∑
j=1

√
4
(
nβ2j + nβ2j−1

)
log ((|V j | × |V j−1|)

= βN +
1√
n

N∑
j=1

√
12β2j log ((|V j | × |V j−1|)

≤ βN +
1√
n

N∑
j=1

βj

√
12 log (|V j | × |V j |)

≤ βN +

√
24

n

N∑
j=1

βj

√
log (|V j |)

But βj = 2(βj − βj+1) and so

≤ βN + 2

√
24

n

N∑
j=1

(βj − βj+1)
√

log (|V j |)

≤ βN + 2

√
24

n

N∑
j=1

(βj − βj+1)
√
n log (N2(F , βj))

≤ βN +
10√
n

∫ β0

βN+1

√
log (N2(F , δ))dδ
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Now for any α let N = max{j : βj = 2j ≥ 2α}. Hence, for this choice of N we have that

βN+1 ≤ 2α and so βN ≤ 4α also note that βN+1 ≥ βN
2 ≥ α. Hence

1

n
Eε

[
sup
f∈F

n∑
t=1

εtf(ε1:t−1)

]
≤ 4α+

10√
n

∫ 1

α

√
log (N2(F , δ))dδ

Since choice of α is arbitrary we conclude the theorem taking infimum.
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