Machine Learning Theory (CS 6783)

Lecture 8: Covering Numbers

1 Covering Numbers

We already saw how to bound Rademacher Complexity in the cases where F is a finite set of
mappings. We are often interested in infinite . To this end, we will use the notion of covering
to bound Rademacher complexity. At a high level, the idea of covering is to approximate F by a
finite family. Recall that the Sequential Rademacher complexity is defined as:

Rn(F) = %Eg [sup Zﬁtf(ﬁl:t—l)]
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To understand the notion of cover, let us first start with a simple example. Say we have a family
of 2"~1 functions indexed by €1.,—1 € {#1}""1 as follows. F = {fc,.._, : €1m—1 € {£1}""} where
fern_1(€1:4—1) = 0 for any €1.4—1 # €1.n—1 and fe,,, ,(€1.n—1) = 1. That is, fc,,, , evaluates to a 1
only on €;.,_1 and 0 for any other input. Clearly |F| = 2"~1. But the claim is that for the purpose
of Rademacher complexity, we can cover this class of mappings with just two functions, given by
F = {f1, f2} where f is the constant 0 function and f» is a mapping such that for any ¢t < n — 1,
fa(e14) = 0 and fa(€1.n—1) = 1. That is, fo is 0 for any input of length less than n — 1 and is +1
on any input of length n — 1. Now note that:
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Clearly, using the finite bound on F yields a way better bound.
Inspired by this observation let us define the notion of cover and covering numbers.

Definition 1. V ¢ RU={EL" 45 gp Ly, cover of F C RUS LY gt scale B> 0 if, for every
e € {£1}" and for all f € F, there exists vy € V such that

1 — , 1/p
ﬁ Z |f(€1:t71) — Vf,e(elst—1)| <A
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Covering number is then defined as:
Np(F,B) = min{|V|: V is an €, cover of F at scale B}

To give you a picture, consider the classic Rademacher complexity case. You can think of
V' C R" as a finite discretization of 7 C R" to scale 3 in the normalize ¢, distance as shown in Figure
below. It can easily be verified that for any p,p’ € [1,00) such that p’ < p, Ny (F, B) < Np(F, ).



2 Pollard’s bounds

Lemma 1. For any mapping F C RU:L:Hil}t*l,
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Proof. Let V be any ¢; cover of F at scale 8 to be set later.
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Since above statement holds for any cover V', we have
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Since above statement holds for all 5 we have,
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Example : Classical Rademacher complexity on Non-decreasing functions mapping to
Y= [07 1]

Discretize ) = [—1, 1] to § granularity as bins [0, f], [3,20],...,[1 — 3, 1]. There are 1/ bins. Now
f1,..., fn are in ascending order. Any non-decreasing function can be approximated to accuracy (3
(even in the £, metric) as is shown in the figure below.

What is the size of this cover?

One possible approach to bound the size of the cover could be to note that there are n points and
each can fall in one of 1/8 bins. However this would be too loose and lead to covering number
1/p™ which does not yield any useful bounds. Alternatively, to describe any element of the cover,
all we need to do is to specify for each grid/bin on the y axis, the smallest index i at which the
fi is larger than the upper end of the bin. One can think of this smallest index as a break-point
in the cover for the specific function. Now to bound the size of the cover, note that there are 1/
bins and each bin can have a break-point that is one of the n indices. Thus the total size of the
cover is n'/#. This is illustrated in the figure below. Hence we have,

Noo(F, B) < nt/#

If we use this with the Pollard’s bounds we get :
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3 Dudley Chaining

Lemma 2. For any function class F bounded by 1,
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Proof. Let V7 be an {5 cover of F at scale B = 277, We assume that V; is the minimal cover so
that [V7| = Na(F, B;). Note that since the function class is bounded by 1, the singleton set

Vo= {O{ﬂ}t—l > o}
t=1

is a cover at scale 1. Now further, for any f € F let vgc correspond to the element in V7 that is
Bj close to f on the sample in the normalized ¢ sense. Such element is guaranteed to exist by
definition of the cover. Now note that by telescoping sum,
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Hence we have that,
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Using Cauchy Shwartz inequality on the first of the two terms above,
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where the last step we replaced the first term by Sy since Vﬁcv . is the element that is By close to f

in the normalized ¢s sense. Now define set W9 C RUS {1 59

Wi = {Wf,e(el:tq) = V?E(fl:tfl) — vjc;l(el:t,l), and 0 otherwise : f € F,e € {:l:l}"}

That is each wy . evaluates to vgc — vi;_el when input is a subsequence of € and is 0 otherwise.Note
that |[W7| < |[V7] x |Vi71| since each element in W/ is the difference between one element in V7



and one from V73—, Therefore :
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Using Masart’s finite lemma, we have
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But 3; = 2(8; — fj+1) and so
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Now for any a let N = max{j : 8; = 2/ > 2a}. Hence, for this choice of N we have that
Br+1 < 2a and so Sy < 4a also note that Syg1 > ’BTN > «. Hence
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Since choice of « is arbitrary we conclude the theorem taking infimum. O



