Machine Learning Theory (CS 6783)

Lecture 8: Covering Numbers

1 Covering Numbers

We already saw how to bound Rademacher Complexity in the cases where \mathcal{F} is a finite set of mappings. We are often interested in infinite \mathcal{F}. To this end, we will use the notion of covering to bound Rademacher complexity. At a high level, the idea of covering is to approximate \mathcal{F} by a finite family. Recall that the Sequential Rademacher complexity is defined as:

$$
\mathcal{R}_{n}(\mathcal{F}):=\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} f\left(\epsilon_{1: t-1}\right)\right]
$$

To understand the notion of cover, let us first start with a simple example. Say we have a family of 2^{n-1} functions indexed by $\epsilon_{1: n-1} \in\{ \pm 1\}^{n-1}$ as follows. $\mathcal{F}=\left\{f_{\epsilon_{1: n-1}}: \epsilon_{1: n-1} \in\{ \pm 1\}^{n-1}\right\}$ where $f_{\epsilon_{1: n-1}}\left(\epsilon_{1: t-1}\right)=0$ for any $\epsilon_{1: t-1} \neq \epsilon_{1: n-1}$ and $f_{\epsilon_{1: n-1}}\left(\epsilon_{1: n-1}\right)=1$. That is, $f_{\epsilon_{1: n-1}}$ evaluates to a 1 only on $\epsilon_{1: n-1}$ and 0 for any other input. Clearly $|\mathcal{F}|=2^{n-1}$. But the claim is that for the purpose of Rademacher complexity, we can cover this class of mappings with just two functions, given by $\overline{\mathcal{F}}=\left\{f_{1}, f_{2}\right\}$ where f_{1} is the constant 0 function and f_{2} is a mapping such that for any $t<n-1$, $f_{2}\left(\epsilon_{1: t}\right)=0$ and $f_{2}\left(\epsilon_{1: n-1}\right)=1$. That is, f_{2} is 0 for any input of length less than $n-1$ and is +1 on any input of length $n-1$. Now note that:

$$
\mathcal{R}_{n}(\mathcal{F}):=\frac{1}{n} \mathbb{E}_{\epsilon}\left[\max _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} f\left(\epsilon_{1: t-1}\right)\right]=\frac{1}{n} \mathbb{E}_{\epsilon}\left[\max _{f \in \overline{\mathcal{F}}} \sum_{t=1}^{n} \epsilon_{t} f\left(\epsilon_{1: t-1}\right)\right]=\mathcal{R}_{n}(\overline{\mathcal{F}})
$$

Clearly, using the finite bound on $\overline{\mathcal{F}}$ yields a way better bound.
Inspired by this observation let us define the notion of cover and covering numbers.
Definition 1. $V \subset \mathbb{R}_{t=1}^{n}\{ \pm 1\}^{t-1}$ is an ℓ_{p} cover of $\mathcal{F} \subset \mathbb{R}_{t=1}^{n}\{ \pm 1\}^{t-1}$ at scale $\beta>0$ if, for every $\epsilon \in\{ \pm 1\}^{n}$ and for all $f \in \mathcal{F}$, there exists $\mathbf{v}_{f, \epsilon} \in V$ such that

$$
\left(\frac{1}{n} \sum_{t=1}^{n}\left|f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}\left(\epsilon_{1: t-1}\right)\right|^{p}\right)^{1 / p} \leq \beta
$$

Covering number is then defined as:

$$
\mathcal{N}_{p}(\mathcal{F}, \beta)=\min \left\{|V|: V \text { is an } \ell_{p} \text { cover of } \mathcal{F} \text { at scale } \beta\right\}
$$

To give you a picture, consider the classic Rademacher complexity case. You can think of $V \subset \mathbb{R}^{n}$ as a finite discretization of $\mathcal{F} \subset \mathbb{R}^{n}$ to scale β in the normalize ℓ_{p} distance as shown in Figure below. It can easily be verified that for any $p, p^{\prime} \in[1, \infty)$ such that $p^{\prime} \leq p, \mathcal{N}_{p^{\prime}}(\mathcal{F}, \beta) \leq \mathcal{N}_{p}(\mathcal{F}, \beta)$.

2 Pollard's bounds

Lemma 1. For any mapping $\mathcal{F} \subset \mathbb{R}_{t=1}^{n}\{ \pm 1\}^{t-1}$,

$$
\mathcal{R}_{n}(\mathcal{F}) \leq \inf _{\beta \geq 0}\left\{\beta+\sqrt{\frac{2 \log \mathcal{N}_{1}(\mathcal{F}, \beta)}{n}}\right\}
$$

Proof. Let V be any ℓ_{1} cover of \mathcal{F} at scale β to be set later.

$$
\begin{aligned}
\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} f\left(\epsilon_{1: t-1}\right)\right] & =\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t}\left(f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}\left(\epsilon_{1: t-1}\right)\right)+\epsilon_{t} \mathbf{v}_{f, \epsilon}\left(\epsilon_{1: t-1}\right)\right] \\
& \leq \frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t}\left(f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}\left(\epsilon_{1: t-1}\right)\right)\right]+\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} \mathbf{v}_{f, \epsilon}\left(\epsilon_{1: t-1}\right)\right] \\
& \leq \frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t}\left(f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}\left(\epsilon_{1: t-1}\right)\right)\right]+\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{\mathbf{v} \in V} \sum_{t=1}^{n} \epsilon_{t} \mathbf{v}\left(\epsilon_{1: t-1}\right)\right] \\
& \leq \frac{1}{n} \sup _{f \in \mathcal{F}} \sum_{t=1}^{n}\left|f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}\left(\epsilon_{1: t-1}\right)\right|+\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{\mathbf{v} \in V} \sum_{t=1}^{n} \epsilon_{t} \mathbf{v}\left(\epsilon_{1: t-1}\right)\right] \\
& \leq \beta+\sqrt{\frac{2 \log V}{n}}
\end{aligned}
$$

Since above statement holds for any cover V, we have

$$
\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} f\left(x_{t}\right)\right] \leq \beta+\sqrt{\frac{2 \log \mathcal{N}_{1}(\mathcal{F}, \beta)}{n}}
$$

Since above statement holds for all β we have,

$$
\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} f\left(x_{t}\right)\right] \leq \inf _{\beta \geq 0}\left\{\beta+\sqrt{\frac{2 \log \mathcal{N}_{1}\left(\mathcal{F}, \beta, x_{1}, \ldots, x_{n}\right)}{n}}\right\}
$$

Example : Classical Rademacher complexity on Non-decreasing functions mapping to

 $\mathcal{Y}=[0,1]$Discretize $\mathcal{Y}=[-1,1]$ to β granularity as bins $[0, \beta],[\beta, 2 \beta], \ldots,[1-\beta, 1]$. There are $1 / \beta$ bins. Now f_{1}, \ldots, f_{n} are in ascending order. Any non-decreasing function can be approximated to accuracy β (even in the ℓ_{∞} metric) as is shown in the figure below.

What is the size of this cover?
One possible approach to bound the size of the cover could be to note that there are n points and each can fall in one of $1 / \beta$ bins. However this would be too loose and lead to covering number $1 / \beta^{n}$ which does not yield any useful bounds. Alternatively, to describe any element of the cover, all we need to do is to specify for each grid/bin on the y axis, the smallest index i at which the f_{i} is larger than the upper end of the bin. One can think of this smallest index as a break-point in the cover for the specific function. Now to bound the size of the cover, note that there are $1 / \beta$ bins and each bin can have a break-point that is one of the n indices. Thus the total size of the cover is $n^{1 / \beta}$. This is illustrated in the figure below. Hence we have,

$$
\mathcal{N}_{\infty}(\mathcal{F}, \beta) \leq n^{1 / \beta}
$$

If we use this with the Pollard's bounds we get :

$$
\hat{\mathcal{R}} \leq \inf _{\beta \geq 0}\left\{\beta+\sqrt{\frac{2 \log n}{n \beta}}\right\}=2\left(\frac{2 \log n}{n}\right)^{1 / 3}
$$

3 Dudley Chaining

Lemma 2. For any function class \mathcal{F} bounded by 1,

$$
\hat{\mathcal{R}}_{S}(\mathcal{F}) \leq \inf _{\alpha \geq 0}\left\{4 \alpha+\frac{10}{\sqrt{n}} \int_{\alpha}^{1} \sqrt{\log \left(\mathcal{N}_{2}(\mathcal{F}, \delta)\right)} d \delta\right\}=: \mathcal{D}_{S}(\mathcal{F})
$$

Proof. Let V^{j} be an ℓ_{2} cover of \mathcal{F} at scale $\beta_{j}=2^{-j}$. We assume that V_{j} is the minimal cover so that $\left|V^{j}\right|=\mathcal{N}_{2}\left(\mathcal{F}, \beta_{j}\right)$. Note that since the function class is bounded by 1 , the singleton set

$$
V^{0}=\left\{\bigcup_{t=1}^{n}\{ \pm 1\}^{t-1} \mapsto 0\right\}
$$

is a cover at scale 1. Now further, for any $f \in \mathcal{F}$ let \mathbf{v}_{f}^{j} correspond to the element in V^{j} that is β_{j} close to f on the sample in the normalized ℓ_{2} sense. Such element is guaranteed to exist by definition of the cover. Now note that by telescoping sum,

$$
f\left(\epsilon_{1: t-1}\right)=f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f}^{0}\left(\epsilon_{1: t-1}\right)=\left(f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f}^{N}\left(\epsilon_{1: t-1}\right)\right)+\sum_{j=1}^{N}\left(\mathbf{v}_{f}^{j}\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f}^{j-1}\left(\epsilon_{1: t-1}\right)\right)
$$

Hence we have that,

$$
\begin{aligned}
& \frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} f\left(\epsilon_{1: t-1}\right)\right] \\
& \quad=\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t}\left(f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{N}\left(\epsilon_{1: t-1}\right)\right)+\epsilon_{t} \sum_{j=1}^{N}\left(\mathbf{v}_{f, \epsilon}^{j}\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f}^{j-1}\left(\epsilon_{1: t-1}\right)\right)\right] \\
& \quad \leq \frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t}\left(f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{N}\left(\epsilon_{1: t-1}\right)\right)\right]+\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{j=1}^{N} \sum_{t=1}^{n} \epsilon_{t}\left(\mathbf{v}_{f, \epsilon}^{j}\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{j-1}\left(\epsilon_{1: t-1}\right)\right)\right]
\end{aligned}
$$

Using Cauchy Shwartz inequality on the first of the two terms above,

$$
\begin{aligned}
& \leq \frac{1}{n} \mathbb{E}_{\epsilon}\left[\sqrt{\sum_{t=1}^{n} \epsilon_{t}^{2}} \sqrt{\sup _{f \in \mathcal{F}} \sum_{t=1}^{n}\left(f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{N}\left(\epsilon_{1: t-1}\right)\right)^{2}}+\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{j=1}^{N} \sum_{t=1}^{n} \epsilon_{t}\left(\mathbf{v}_{f, \epsilon}^{j}\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{j-1}\left(\epsilon_{1: t-1}\right)\right)\right]\right. \\
& =\sup _{f \in \mathcal{F}} \sqrt{\frac{1}{n} \sum_{t=1}^{n}\left(f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{N}\left(\epsilon_{1: t-1}\right)\right)^{2}}+\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{j=0}^{N} \sum_{t=1}^{n} \epsilon_{t}\left(\mathbf{v}_{f, \epsilon}^{j}\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{j-1}\left(\epsilon_{1: t-1}\right)\right)\right] \\
& \leq \beta_{N}+\frac{1}{n} \sum_{j=1}^{N} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t}\left(\mathbf{v}_{f, \epsilon}^{j}\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{j-1}\left(\epsilon_{1: t-1}\right)\right)\right]
\end{aligned}
$$

where the last step we replaced the first term by $\beta_{N} \operatorname{since} \mathbf{v}_{f, \epsilon}^{N}$ is the element that is β_{N} close to f in the normalized ℓ_{2} sense. Now define set $W^{j} \subset \mathbb{R}_{t=1}^{n}\{ \pm 1\}^{t-1}$ as

$$
W^{j}=\left\{\mathbf{w}_{f, \epsilon}\left(\epsilon_{1: t-1}\right)=\mathbf{v}_{f, \epsilon}^{j}\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{j-1}\left(\epsilon_{1: t-1}\right), \text { and } 0 \text { otherwise }: f \in \mathcal{F}, \epsilon \in\{ \pm 1\}^{n}\right\}
$$

That is each $\mathbf{w}_{f, \epsilon}$ evaluates to $\mathbf{v}_{f, \epsilon}^{j}-\mathbf{v}_{f, \epsilon}^{j-1}$ when input is a subsequence of ϵ and is 0 otherwise.Note that $\left|W^{j}\right| \leq\left|V^{j}\right| \times\left|V^{j-1}\right|$, since each element in \mathcal{W}^{j} is the difference between one element in V^{j}
and one from V^{j-1}. Therefore:

$$
\begin{aligned}
& \frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} f\left(\epsilon_{1: t-1}\right)\right] \\
& \quad \leq \beta_{N}+\frac{1}{n} \sum_{j=1}^{N} \mathbb{E}_{\epsilon}\left[\sup _{\mathbf{w} \in \mathcal{W}^{j}} \sum_{t=1}^{n} \epsilon_{t} \mathbf{w}\left(\epsilon_{1: t-1}\right)\right]
\end{aligned}
$$

Using Masart's finite lemma, we have

$$
\begin{aligned}
& \leq \beta_{N}+\frac{1}{n} \sum_{j=1}^{N} \sqrt{2\left(\max _{\mathbf{w} \in W^{j}, \epsilon \in\{ \pm 1\}^{n}} \sum_{t=1}^{n} \mathbf{w}\left(\epsilon_{1: t-1}\right)^{2}\right) \log \left(\left|W^{j}\right|\right)} \\
& \leq \beta_{N}+\frac{1}{n} \sum_{j=1}^{N} \sqrt{2\left(\max _{f \in \mathcal{F}, \epsilon \in\{ \pm 1\}^{n}} \sum_{t=1}^{n}\left(\mathbf{v}_{f, \epsilon}^{j}\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{j-1}\left(\epsilon_{1: t-1}\right)\right)^{2}\right) \log \left(\left(\left|V^{j}\right| \times\left|V^{j-1}\right|\right)\right.} \\
& =\beta_{N}+\frac{1}{n} \sum_{j=1}^{N} \sqrt{2\left(\max _{f \in \mathcal{F}, \epsilon \in\{ \pm 1\}^{n}} \sum_{t=1}^{n}\left(\mathbf{v}_{f, \epsilon}^{j}\left(\epsilon_{1: t-1}\right)-f\left(\epsilon_{1: t-1}\right)+f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{j-1}\left(\epsilon_{1: t-1}\right)\right)^{2}\right) \log \left(\left(\left|V^{j}\right| \times\left|V^{j-1}\right|\right)\right.} \\
& \leq \beta_{N}+\frac{1}{n} \sum_{j=1}^{N} \sqrt{4\left(\max _{f \in \mathcal{F}, \epsilon \in\{ \pm 1\}^{n}} \sum_{t=1}^{n}\left(\mathbf{v}_{f, \epsilon}^{j}\left(\epsilon_{1: t-1}\right)-f\left(\epsilon_{1: t-1}\right)\right)^{2}+\left(f\left(\epsilon_{1: t-1}\right)-\mathbf{v}_{f, \epsilon}^{j-1}\left(\epsilon_{1: t-1}\right)\right)^{2}\right) \log \left(\left(\left|V^{j}\right| \times\left|V^{j-1}\right|\right)\right.} \\
& \leq \beta_{N}+\frac{1}{n} \sum_{j=1}^{N} \sqrt{4\left(n \beta_{j}^{2}+n \beta_{j-1}^{2}\right) \log \left(\left(\left|V^{j}\right| \times\left|V^{j-1}\right|\right)\right.} \\
& =\beta_{N}+\frac{1}{\sqrt{n}} \sum_{j=1}^{N} \sqrt{12 \beta_{j}^{2} \log \left(\left(\left|V^{j}\right| \times\left|V^{j-1}\right|\right)\right.} \\
& \leq \beta_{N}+\frac{1}{\sqrt{n}} \sum_{j=1}^{N} \beta_{j} \sqrt{12 \log \left(\left|V^{j}\right| \times\left|V^{j}\right|\right)} \\
& \leq \beta_{N}+\sqrt{\frac{24}{n}} \sum_{j=1}^{N} \beta_{j} \sqrt{\log \left(\left|V^{j}\right|\right)}
\end{aligned}
$$

But $\beta_{j}=2\left(\beta_{j}-\beta_{j+1}\right)$ and so

$$
\begin{aligned}
& \leq \beta_{N}+2 \sqrt{\frac{24}{n}} \sum_{j=1}^{N}\left(\beta_{j}-\beta_{j+1}\right) \sqrt{\log \left(\left|V^{j}\right|\right)} \\
& \leq \beta_{N}+2 \sqrt{\frac{24}{n}} \sum_{j=1}^{N}\left(\beta_{j}-\beta_{j+1}\right) \sqrt{n \log \left(\mathcal{N}_{2}\left(\mathcal{F}, \beta_{j}\right)\right)} \\
& \leq \beta_{N}+\frac{10}{\sqrt{n}} \int_{\beta_{N+1}}^{\beta_{0}} \sqrt{\log \left(\mathcal{N}_{2}(\mathcal{F}, \delta)\right)} d \delta
\end{aligned}
$$

Now for any α let $N=\max \left\{j: \beta_{j}=2^{j} \geq 2 \alpha\right\}$. Hence, for this choice of N we have that $\beta_{N+1} \leq 2 \alpha$ and so $\beta_{N} \leq 4 \alpha$ also note that $\beta_{N+1} \geq \frac{\beta_{N}}{2} \geq \alpha$. Hence

$$
\frac{1}{n} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} f\left(\epsilon_{1: t-1)}\right] \leq 4 \alpha+\frac{10}{\sqrt{n}} \int_{\alpha}^{1} \sqrt{\log \left(\mathcal{N}_{2}(\mathcal{F}, \delta)\right)} d \delta\right.
$$

Since choice of α is arbitrary we conclude the theorem taking infimum.

