
Machine Learning Theory (CS 6783)

Lecture 6: Properties of Rademacher Complexity

1 Rademacher Complexity Beyond Cover Style Result

We saw how Rademacher complexity and sequential Rademacher complexity came out naturally
for bit prediction and betting games with binary outcomes. It turns out that the quantities are
crucial complexity measures more generally for statistical learning and online learning problems.
In fact, for the general online supervised learning problem with convex losses, in your assignment 1
you guys already make a connection to the sequential Rademacher complexity. Below to motivate
why we need to understand properties of the two Rademacher complexities, I will mention results
that make the connections of the two quantities to statistical and online learning. We will formally
prove these results in latter lectures. But I will just mention them here.

First recall the statistical learning setting. We get instances (x1, y1), . . . , (xn, yn) iid from a
fixed but unknown distribution D. In this case, a popular algorithm or method is to find a model
amongst set of models F that minimizes training error. We will use L̂S(f) to represent training
loss w.r.t. to sample S for a model f . ERM returns,

f̂ = argmin
f∈F

1

n

n∑
t=1

`(f(xt), yt) = argmin
f∈F

L̂S(f)

We will also use the notation LD(f) = E(x,y)∼D

[
`(f̂(x), y)

]
. It turns out that the performance of

ERM compared to the best in class over population loss (expected loss over future draws) is upper
bounded by the Classical Rademacher complexity as follows.

ES
[
LD(f̂)−min

f∈F
LD(f)

]
= ES

[
LD(f̂)− L̂S(f̂) + L̂S(f̂)−min

f∈F
LD(f)

]

Since for any model f , ES
[
L̂S(f)

]
= LD(f),

= ES
[
LD(f̂)− L̂S(f̂) + L̂S(f̂)

]
−min
f∈F

ES
[
L̂S(f)

]
≤ ES

[
LD(f̂)− L̂S(f̂) + L̂S(f̂)

]
− ES

[
min
f∈F

L̂S(f)

]
= ES

[
LD(f̂)− L̂S(f̂) + L̂S(f̂)

]
− ES

[
L̂S(f̂)

]
= ES

[
LD(f̂)− L̂S(f̂)

]
≤ ES

[
sup
f∈F

LD(f)− L̂S(f)

]
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Now since LD(f) = ES′
[
L̂S′(f)

]
for any S′ = (x′1, y

′
1), . . . , (x′n, y

′
n) drawn iid from distribution D, we have,

ES
[
LD(f̂)−min

f∈F
LD(f)

]
≤ ES

[
sup
f∈F

ES′
[
L̂S′(f)

]
− L̂S(f)

]

≤ ES,S′
[

sup
f∈F

L̂S′(f)− L̂S(f)

]

= ES,S′
[

sup
f∈F

1

n

n∑
t=1

(`(f(x′t), y
′
t)− `(f(xt), yt))

]
Now note that S and S′ are drawn iid from same distribution and so for each t, `(f(x′t), y

′
t) − `(f(xt), yt)

and `(f(xt), yt)− `(f(x′t), y
′
t) have the same distribution and so for any sequence of signs ε1, . . . , εn,

ES,S′
[

sup
f∈F

1

n

n∑
t=1

(`(f(x′t), y
′
t)− `(f(xt), yt))

]
= ES,S′

[
sup
f∈F

1

n

n∑
t=1

εt (`(f(x′t), y
′
t)− `(f(xt), yt))

]
Hence taking expectation over ε’s we conclude that:

ES
[
LD(f̂)−min

f∈F
LD(f)

]
≤ ES,S′

[
Eε

[
sup
f∈F

1

n

n∑
t=1

εt (`(f(x′t), y
′
t)− `(f(xt), yt))

]]

= ES,S′
[
Eε

[
sup
f∈F

(
1

n

n∑
t=1

εt`(f(x′t), y
′
t) +

1

n

n∑
t=1

−εt`(f(xt), yt)

)]]

≤ ES,S′
[
Eε

[
sup
f∈F

(
1

n

n∑
t=1

εt`(f(x′t), y
′
t)

)
+ sup
f∈F

(
1

n

n∑
t=1

−εt`(f(xt), yt)

)]]

= ES′
[
Eε

[
sup
f∈F

1

n

n∑
t=1

εt`(f(x′t), y
′
t)

]]
+ ES

[
Eε

[
sup
f∈F

1

n

n∑
t=1

−εt`(f(xt), yt)

]]

= 2ES

[
Eε

[
sup
f∈F

1

n

n∑
t=1

εt`(f(xt), yt)

]]
Now to proceed note that,

ES
[
LD(f̂)−min

f∈F
LD(f)

]
≤ 2ES

[
Eε

[
sup
f∈F

1

n

n∑
t=1

εt`(f(xt), yt)

]]

= ES

[
Eε

[
sup

g∈`◦F|(x1,y1),...,(xn,yn)

1

n

n∑
t=1

εtgt

]]
where the set ` ◦ F|(x1,y1),...,(xn,yn) ⊂ Rn is simply given by

` ◦ F|(x1,y1),...,(xn,yn) = {(`(f(x1), y1), . . . , `(f(xn), yn)) : f ∈ F}

Notice that the right hand side is the style of Rademacher complexity you guys have already encountered
where each element of the set is an n dimensional vector.

Similarly, in the online setting where xt, yt are adversarially produced, it turns out that one can show
bound on regret against any model class F in terms of the sequential Rademacher Complexity as follows:

E

[
1

n

n∑
t=1

`(ŷt, yt)−min
f∈F

1

n

n∑
t=1

`(f(xt), yt)

]
≤ 2 sup

x,y
Eε

[
sup
f∈F

1

n

n∑
t=1

εt`(f(x(ε1:t−1)),y(ε1:t−1))

]

= 2 sup
x,y

Eε

[
sup

g∈`◦F|x,y

1

n

n∑
t=1

εtg(ε1:t−1)

]

2



where given x,y that are mapping from binary strings of length 0 up to n− 1 to X and Y respectively, we
define ` ◦ F|x,y as set of mapping from

⋃n
t=1{±1}t−1 7→ R given by:

` ◦ F|x,y = {∀t ∈ [n], ε1:t−1 7→ `(f(x(ε1:t−1)),y(ε1:t−1)) : f ∈ F}

This is true for very general loss functions and X and Y. Notice that the RHS above is the style of sequential
Rademacher complexity you encountered in the linear betting game.

2 Properties of Rademacher Complexity

Recall that the Sequential Rademacher complexity is defined as:

Rn(F) :=
1

n
Eε

[
sup
f∈F

n∑
t=1

εtf(ε1:t−1)

]
Proposition 1. For any classes G,H:

1. If H ⊂ G, then Rn(H) ≤ Rn(G)

2. For any fixed function h, Rn(G + h) = Rn(G)

3. Rn(cvx(G)) = Rn(G)

Proof.

1. Rn(H) = 1
nEε

[
supg∈H

∑n
t=1 εtg(ε1:t−1)

]
≤ 1

nEε
[
supg∈G

∑n
t=1 εtg(ε1:t−1)

]
= Rn(G)

2.

Rn(G + h) =
1

n
Eε

[
sup
g∈G

n∑
t=1

εt(g(ε1:t−1) + h(ε1:t−1))

]

=
1

n
Eε

[
sup
g∈G

{
n∑
t=1

εtg(ε1:t−1)

}
+

n∑
t=1

εth(ε1:t−1))

]

=
1

n
Eε

[
sup
g∈G

n∑
t=1

εtg(ε1:t−1)

]
+ 0 = Rn(G)

3. cvx(G) = {Eg∼π [g(·)] : π ∈ ∆(G)}

Rn(cvx(G)) =
1

n
Eε

[
sup

π∈∆(G)

n∑
t=1

εtEg∈π [g] (ε1:t−1)

]

=
1

n
Eε

[
sup

π∈∆(G)

n∑
t=1

εtEg∈π [g(ε1:t−1)]

]

=
1

n
Eε

[
sup

π∈∆(G)

Eg∈π

[
n∑
t=1

εtg(ε1:t−1)

]]

Max is attained at vertex of simplex (max element amongst support of distribution)

=
1

n
Eε

[
sup
g∈G

n∑
t=1

εtg(zt)

]
= Rn(G)
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Next we will prove a very important lemma called the contraction lemma. We will prove it specifically
for classical Rademacher complexity. While the statement is also true for the sequential version, we will only
prove it for the classical version.

Lemma 2. For any φ1, . . . , φn where each φi : R 7→ R is L-Lipschitz, and any F ⊂ Rn, we have,

1

n
Eε

[
sup
g∈G

n∑
t=1

εtφt (gt)

]
≤ L

n
Eε

[
sup
g∈G

n∑
t=1

εtgt

]

Proof.

1

n
Eε1:n

[
sup
g∈G

n∑
t=1

εtφt (gt)

]

= Eε1:n−1

supg∈G

{∑n−1
t=1 εtφt (gt) + φn(gn)

}
+ supg∈G

{∑n−1
t=1 εtφt (gt)− φn(gn)

}
2

= Eε1:n−1

 supg,g′∈G

{∑n−1
t=1 εt (φt (gt) + φt (g′t)) + φn(gn)− φn(g′n)

}
2


≤ Eε1:n−1

 supg,g′∈G

{∑n−1
t=1 εt (φt (gt) + φt (g′t)) + L|gn − g′n|

}
2


= Eε1:n−1

 supg,g′∈G

{∑n−1
t=1 εt (φt (gt) + φt (g′t)) + L(gn − g′n)

}
2


= Eε1:n−1

supg∈G

{∑n−1
t=1 εtφt (gt) + Lgn

}
+ supg∈G

{∑n−1
t=1 εtφt (gt)− Lgn

}
2

=
1

n
Eε1:n

[
sup
g∈G

n−1∑
t=1

εtφt (gt) + Lεngn

]

Repeating the above argument we remove φ1, . . . , φn−1 and so, we conclude that

1

n
Eε

[
sup
g∈G

n∑
t=1

εtφt (gt)

]
≤ L

n
Eε

[
sup
g∈G

n∑
t=1

εtgt

]

To see an example of the above contraction lemma application, think of the statistical learning setting
where given (x1, y1), . . . , (xn, yn) we want to bound the Rademacher complexity of set ` ◦ F|(x1,y1),...,(xn,yn).
To this end, we cant think of φt(a) = `(a, yt) and we can think of each ft = f(xt). Thus the above contraction
lemma tells us that:

Rn(` ◦ F|(x1,y1),...,(xn,yn)) ≤ LRn(F|x1,...,xn
)

where F|x1,...,xn
= {(f(x1), . . . , f(xn))) : f ∈ F}. In other words, if we have a Lipschitz loss, Rademacher

complexity with loss composed, can be upper bounded by Rademacher complexity of just the class of models.
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