
Machine Learning Theory (CS 6783)

Lecture 4: Rademacher Complexity and Finite Lemma

1 Back to Penny Matching, a Betting Version

We saw that via Cover’s result, one could predict outcomes of arbitrary sequences and compete
against any set of predictions F ⊆ {±1}n in hindsight with an additive factor of the Rademcher
complexity of this set given by

Rn(F) =
1

n
Eε

[
sup
f∈F

n∑
t=1

ftεt

]

This set if interesting enough, it ensures that our payoff is never too negative against any adversary.
But say we wanted to ensure that we dont make much lesser than what Shannon’s machine would
have done against an arbitrary opponent. It turns out that Shannon’s machine was a 7 state, finite
state machine. While we dont have access to this machine, one strategy would be to build a system
that can compete with arbitrary 7 state automaton. Can we do this? Well we could define the
corresponding φ to have the minimum over all such machines in hindsight, but the key bottleneck
is that stability of such a φ is not guaranteed. However, if you recall the linear betting game, we
did not need any such stability. Hence if we instead consider a betting version of the game where
we try to match pennies and also place a bet of desired amount on the outcome, then it turns out
we can use arbitrary φ. So lets consider this fancier version. Say F ⊂

⋃n−1
t=0 {±1}t 7→ R. That is,

each f ∈ F can take as input any sequence of up to length n−1 of binary labels and outputs a real
number. The real number that is output should be viewed as follows, its magnitude is the amount
the strategy f is suggesting we bet and the sign represents whether we bet on heads or tails. Now
given this, we can use

φ(y1, . . . , yn) = min
f∈F

1

n

n∑
t=1

−f(y1, . . . , yt−1) · yt + Cn(F)

That is, can we do as well as the best strategy for betting amongst the set of strategies F with
an additional slack of Cn(F). Since this is the betting game, we don’t need stability any more.
To answer the question of what is the smallest Cn(F) needed to ensure existence of a successful
learning algorithm we simply use the lemma for linear betting which just tells us that we need to
ensure that Eε [φ(ε)] ≥ 0. Using this we immediately conclude that the optimal Cn(F) is given by

Cn(F) = −Eε

[
min
f∈F

1

n

n∑
t=1

−f(ε1, . . . , εt−1) · εt

]
= Eε

[
max
f∈F

1

n

n∑
t=1

εtf(ε1, . . . , εt−1)

]

Through this course we will use the short hand x1:t to represent the sequence x1, . . . , xt. The above
inspires us to define a new Rademacher complexity like term which is called sequential Rademacher
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complexity given by

Rsqn (F) =
1

n
Eε

[
sup
f∈F

n∑
t=1

εtf(ε1:t−1)

]
This is a strict generalization of Rademacher complexity since we if F consists of only function
that only consider length of input and not the actual bits, we recover the classical Rademacher
complexity.

2 Massart’s Finite Lemma

Now a first key result we prove is that the sequential Rademacher complexity of a finite class of

strategies can be bounded by order O(

√
log |F|
n ). We will in fact prove a more precise lemma below

(that will be useful later) that will imply our goal.

Lemma 1. For any set F ⊂
⋃n−1
t=0 {±1}t 7→ R :

Rsqn (F) =
1

n
Eε

[
max
f∈F

n∑
t=1

εtf(ε1:t−1)

]
≤ 1

n

√√√√2 max
ε∈{±1}n

max
f∈F

(
n∑
t=1

f(ε1:t−1)2

)
log |F|

Proof.

max
f∈F

n∑
t=1

εtf(ε1:t−1) =
1

λ
log

(
max
f∈F

exp

(
λ

n∑
t=1

εtf(ε1:t−1)

))

≤ 1

λ
log

∑
f∈F

exp

(
λ

n∑
t=1

εtf(ε1:t−1)

)
=

1

λ
log

∑
f∈F

n∏
t=1

exp (λεtf(ε1:t−1))


Taking expectation w.r.t. Rademacher random variables,

Eε

[
max
f∈F

n∑
t=1

εtf(ε1:t−1)

]
≤ 1

λ
Eε

log

∑
f∈F

n∏
t=1

exp (λεtf(ε1:t−1))
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Since log is a concave function, by Jensen’s inequality, Expected log is upper bounded by log of
expectation and so:

≤ 1

λ
log

Eε

∑
f∈F

n∏
t=1

exp (λεtf(ε1:t−1))


=

1

λ
log

∑
f∈F

Eε

[
n∏
t=1

exp (λεtf(ε1:t−1))

]
≤ 1

λ
log

(
|F| ×max

f∈F
Eε

[
n∏
t=1

exp (λεtf(ε1:t−1))

])

=
1

λ
log (|F|) +

1

λ
log

(
max
f∈F

Eε

[
n∏
t=1

exp (λεtf(ε1:t−1))

])
(1)

Now for any fixed f ∈ F , we would like to bound Eε [
∏n
t=1 exp (λεtf(ε1:t−1))]. To this end, note

that:

Eε

[
n∏
t=1

exp (λεtf(ε1:t−1))

]
= Eε

[
n−1∏
t=1

exp (λεtf(ε1:t−1))× Eεn [exp (λεnf(ε1:n−1))]

]

= Eε

[
n−1∏
t=1

exp (λεtf(ε1:t−1))×
exp (λf(ε1:n−1)) + exp (−λf(ε1:n−1))

2

]

Using the fact that for any x, ex+e−x

2 ≤ ex2/2,

≤ Eε

[
n−1∏
t=1

exp (λεtf(ε1:t−1))× exp

(
λ2f(ε1:n−1)

2

2

)]

≤ Eε

[
n−1∏
t=1

exp (λεtf(ε1:t−1))× exp

(
λ2f(ε1:n−1)

2

2

)]

≤ Eε

[
n−1∏
t=1

exp (λεtf(ε1:t−1))×max
εn−1

exp

(
λ2f(ε1:n−1)

2

2

)]

= Eε

[
n−2∏
t=1

exp (λεtf(ε1:t−1))× Eεn−1 [exp (λεn−1f(ε1:n−2))]×max
εn−1

exp

(
λ2f(ε1:n−1)

2

2

)]

≤ Eε

[
n−2∏
t=1

exp (λεtf(ε1:t−1))× exp

(
λ2f(ε1:n−2)

2

2

)
×max

εn−1

exp

(
λ2f(ε1:n−1)

2

2

)]

≤ Eε

[
n−2∏
t=1

exp (λεtf(ε1:t−1))× max
εn−2,εn−1

(
exp

(
λ2f(ε1:n−2)

2

2

)
× exp

(
λ2f(ε1:n−1)

2

2

))]
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Proceeding similarly we get,

≤ max
ε1,...,εn−1

n∏
t=1

exp

(
λ2f(ε1:t−1)

2

2

)
= exp

(
λ2 maxε1,...,εn−1

∑n
t=1 f(ε1:t−1)

2

2

)
Plugging this back in Equation 1 we get,

Eε

[
max
f∈F

n∑
t=1

εtf(ε1:t−1)

]
≤ 1

λ
log(|F|) +

1

λ
log

(
exp

(
λ2 maxf∈F maxε1,...,εn−1

∑n
t=1 f(ε1:t−1)

2

2

))
=

1

λ
log(|F|) +

λmaxf∈F maxε1,...,εn−1

∑n
t=1 f(ε1:t−1)

2

2

Choosing λ =

√
2 log |F|

maxf∈F maxε(
∑n
t=1 f(ε1:t−1)2)

completes the proof.

To apply the lemma, lets try to complete with Shannon’s machine or rather all possible K-state
finite automaton. There are (2K)2K such machines in total. Let F represent the strategies of all
such automaton. Note that F ’s will only bet one dollar on outcomes of games. Now we can do as
well as Shannon’s machine or any other such machine (although we might bet more money that
just one dollar) with an additive factor of just

1

n

√√√√2 max
ε∈{±1}n

max
f∈F

(
n∑
t=1

f(ε1:t−1)2

)
log |F| =

√
2 log |F|

n
=

√
4K log(2K)

n
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