Machine Learning Theory (CS 6783)

Lecture 3 (Supplementary Material)

1 Stability of ϕ of Specific Form

Let $\mathcal{F} \subseteq \{\pm 1\}^n$ be a set of n dimensional ± 1 vectors. One form of ϕ we might be interested in for Cover's result is

$$\phi(y_1, \dots, y_n) = \frac{1}{n} \min_{f \in \mathcal{F}} \sum_{t=1}^n \mathbf{1} \{ y_t \neq f_t \} + C_n(\mathcal{F})$$

That is, we want our average error to be bounded by average classification error of the best $f \in \mathcal{F}$ (chosen in hindsight of course) + an extra slack of $C_n(\mathcal{F})$. To apply Cover's result from class, we need two things. First, that ϕ is stable and next, to be able to provide guarantee against any arbitrary adversary, we also need that $\mathbb{E}_{\epsilon} [\phi(\epsilon_1, \ldots, \epsilon_n)] \geq 1/2$.

Before we focus on these two properties, note that when $\mathcal{F} = \{(+1,\ldots,+1),(-1,\ldots,-1)\}$, then $\frac{1}{n}\min_{f\in\mathcal{F}}\sum_{t=1}^{n}\mathbf{1}\{y_t\neq f_t\}$ is exactly the average error of going with majority in hindsight and we already argued that for this case $C_n(\mathcal{F}) = \Theta(1/\sqrt{n})$ to ensure that $\mathbb{E}_{\epsilon}\left[\phi(\epsilon_1,\ldots,\epsilon_n)\right] \geq 1/2$.

Moving to the general case, first towards the question of stability we have the following claim.

Claim 1. For any $\mathcal{F} \subseteq \{\pm 1\}^n$ if we consider any ϕ defined by

$$\phi(y_1, \dots, y_n) = \frac{1}{n} \min_{f \in \mathcal{F}} \sum_{t=1}^{n} \mathbf{1} \{ y_t \neq f_t \} + C_n(\mathcal{F}),$$

such a ϕ is stable.

Proof. Consider any $i \in [n]$ and any $y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n$. Without loss of generality, consider the case when $\phi(y_1, \ldots, y_{i-1}, +1, y_{i+1}, \ldots, y_n) \ge \phi(y_1, \ldots, y_{i-1}, -1, y_{i+1}, \ldots, y_n)$ because when it is not the case we simply consider the same argument below for the terms in the difference swapped.

 $\phi(y_1,\ldots,y_{i-1},+1,y_{i+1},\ldots,y_n)-\phi(y_1,\ldots,y_{i-1},-1,y_{i+1},\ldots,y_n)$

$$= \frac{1}{n} \left(\min_{f \in \mathcal{F}} \left\{ \sum_{t=1}^{i-1} \mathbf{1} \{ y_t \neq f_t \} + \mathbf{1} \{ +1 \neq f_i \} + \sum_{i=1}^{n} \mathbf{1} \{ y_t \neq f_t \} \right\} - \min_{f \in \mathcal{F}} \left\{ \sum_{t=1}^{i-1} \mathbf{1} \{ y_t \neq f_t \} + \mathbf{1} \{ -1 \neq f_i \} + \sum_{i=1}^{n} \mathbf{1} \{ y_t \neq f_t \} \right\} \right)$$

Noting that $-\min(...)$ is same as $\max(-...)$, and rearranging we get,

$$= \frac{1}{n} \max_{f' \in \mathcal{F}} \left(\min_{f \in \mathcal{F}} \left\{ \sum_{t=1}^{i-1} \mathbf{1} \{ y_t \neq f_t \} + \mathbf{1} \{ +1 \neq f_i \} + \sum_{i=1}^{n} \mathbf{1} \{ y_t \neq f_t \} \right\} - \sum_{t=1}^{i-1} \mathbf{1} \{ y_t \neq f_t' \} - \mathbf{1} \{ -1 \neq f_i' \} - \sum_{i=1}^{n} \mathbf{1} \{ y_t \neq f_t' \} \right)$$

replacing the minimum with f' as the choice to use we get,

$$\leq \frac{1}{n} \max_{f' \in \mathcal{F}} \left(\sum_{t=1}^{i-1} \mathbf{1} \{ y_t \neq f'_t \} + \mathbf{1} \{ +1 \neq f'_i \} + \sum_{i=1}^{n} \mathbf{1} \{ y_t \neq f'_t \} - \sum_{t=1}^{i-1} \mathbf{1} \{ y_t \neq f'_t \} - \mathbf{1} \{ -1 \neq f'_i \} - \sum_{i=1}^{n} \mathbf{1} \{ y_t \neq f'_t \} \right)$$

$$= \frac{1}{n} \max_{f' \in \mathcal{F}} \{ \mathbf{1} \{ +1 \neq f'_i \} - \mathbf{1} \{ -1 \neq f'_i \} \}$$

$$\leq \frac{1}{n}$$

Hence, ϕ is stable for any \mathcal{F} .

Now that we have established that ϕ is stable, lets move to what the minimum value of $C_n(\mathcal{F})$ should be to ensure that $\mathbb{E}_{\epsilon} [\phi(\epsilon)] \geq 1/2$. To this end, clearly the smallest $C_n(\mathcal{F})$ is the one where we have the equality

$$\frac{1}{2} = \mathbb{E}_{\epsilon} \left[\phi(\epsilon) \right]$$

$$= \frac{1}{n} \mathbb{E}_{\epsilon} \left[\min_{f \in \mathcal{F}} \sum_{t=1}^{n} \mathbf{1} \{ \epsilon_t \neq f_t \} \right] + C_n(\mathcal{F})$$

and so we have that

$$C_n(\mathcal{F}) = \frac{1}{2} - \mathbb{E}_{\epsilon} \left[\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \mathbf{1} \{ \epsilon_t \neq f_t \} \right]$$

using that fact that for any $y, y' \in \{\pm 1\}$, $\mathbf{1}\{y \neq y'\} = (1 - y.y')/2$ we get,

$$\begin{split} &= \frac{1}{2} - \mathbb{E}_{\epsilon} \left[\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \frac{1}{2} \left(1 - \epsilon_{t} \cdot f_{t} \right) \right] \\ &= \frac{1}{2} - \mathbb{E}_{\epsilon} \left[\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \left(\frac{1}{2} - \frac{1}{2} \epsilon_{t} \cdot f_{t} \right) \right] \\ &= \frac{1}{2} - \mathbb{E}_{\epsilon} \left[\min_{f \in \mathcal{F}} \left(\frac{1}{2} - \frac{1}{2n} \sum_{t=1}^{n} \epsilon_{t} \cdot f_{t} \right) \right] \\ &= -\mathbb{E}_{\epsilon} \left[\min_{f \in \mathcal{F}} \left(-\frac{1}{2n} \sum_{t=1}^{n} \epsilon_{t} \cdot f_{t} \right) \right] \\ &= \frac{1}{2n} \mathbb{E}_{\epsilon} \left[\max_{f \in \mathcal{F}} \sum_{t=1}^{n} \epsilon_{t} \cdot f_{t} \right] \\ &= \frac{1}{2n} \mathbb{E}_{\epsilon} \left[\max_{f \in \mathcal{F}} f^{\top}_{\epsilon} \right] \end{split}$$

where in the last line we can thing of f and ϵ as n dimensional vectors.