
Machine Learning Theory (CS 6783)

Lecture 23-24: Decision Estimation Coefficient for Learning With Partial Information

1 Decision Making With Structured Observations (DMSO)

In the paper ”The Statistical Complexity of Interactive Decision Making” by Foster et al, the general
problem of DMSO was introduced that is rich enough to capture not just multi-armed bandit,
linear bandit and contextual bandit problems but also more complex problems like Reinforcement
Learning (RL). Let us first introduce the learning problem. We get to interact with nature n times
as

For t = 1 to n

Learner picks policy πt ∈ Π

Nature provides reward rt ∈ R for that instance for the chosen policy πt and provides
observations ot ∈ O (a general observation space).

Learner receives reward rt and observes both reward rt and observation ot.

For this lecture as in the paper we focus on the case that rewards and observations are produced
on every round using a fixed stochastic model M∗ : Π 7→ ∆(R × O). That is, given policy πt,
(rt, ot) ∼ M∗(πt). Of course M∗ is unknown to the learner. For a round t with reward rt ∈ R,
we assume that the total reward for that round is give by Rt = TotalRew(rt) where TotalRew is a
fixed function. In most cases, rt is typically just a number which is the total reward for that round
itself, and in the case of episodic RL, rt is a vector of rewards and total reward for the round is
simply the sum of the coordinates for the vector.

Our goal is to minimize expected regret (expectation over draws from M∗) given by

Regn = sup
π∈Π

1

n

n∑
t=1

E(r∗t ,o
∗
t)∼M∗(π) [TotalRew(r∗t)]−

1

n

n∑
t=1

E(rt,ot)∼M∗(πt) [TotalRew(rt)]

To make our lives easier, let us introduce the notation for expected total reward under a given
stochastic model M and policy π as: fM (π) = E(rt,ot)∼M(π) [TotalRew(rt)]. Also, given a model

M , let πM = argmax
π∈Π

fM (π) and let π∗ = argmax
π∈Π

fM
∗
(π) and we also use the shorthand f∗ = fM

∗
.

Notice that regret in this case is given by:

Regn =
1

n

n∑
t=1

(f∗(π∗)− f∗(πt))

Since we shall allow for randomized strategies and we want regret to be small in expectation over our
randomization, if on round t, πt is drawn from pt, we want to ensure that 1

n

∑n
t=1 Eπt∼pt [(f∗(π∗)− f∗(πt)])

is small

1

An example of a problem captured by this setting in the episodic RL problem where each round
consists of an episode of length H. Observation consists of the H states encountered in an episode
belonging to state space S, a policy π : S 7→ [N] is a mapping that picks one of N actions π(s) for
each state s ∈ S. The observation set is simply O = SH and the reward rt = (rt[1], . . . , rt[H]) the H
rewards over the episode t we obtain. Model M∗ specifies the initial state distribution for the first
step in the episode and the Markov Decision Process given by transition kernel T : S× [N] 7→ ∆(S)
that specifies for each state given the action taken from that state, the probability of transiting to
the next state. That is, given we are at state sh on a given step h and we took action ah ∈ [N],
T (s, a) gives the distribution over S of which states we might transit to next. So sh+1 ∼ T (sh, ah).
M∗ also specifies distribution over rewards for taking a given action on a given state.

The main assumption made in the paper is that there is a class of modelsM that contains M∗

the truth. Formally it is stated as follows.

Assumption 1 (Realizability). We assume that the stochastic model M∗ belongs to a a class of
models M known a priori to the learner.

Definition 1 (Decision-Estimation Coefficient (DEC)). The DEC at scale γ > 0 given a nominal
model M̄ , is defined by

Decγ(M, M̄) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p
[
fM (πM)− fM (π)− γD2

H(M(π)|M̄(π))
]

where D2
H(P |Q) is the Hellinger distance between two probability measures P and Q (see below for

definition). We further define Decγ(M) = supM∈MDecγ(M,M)

Given two probability measures P and Q on same probability space, the Hellinger distance

is given by D2
H(P |Q) =

∫ (√
dP −

√
dQ
)2

. If for instance the probabilities are over countable

alphabets the measure is D2
H(P |Q) =

∑
i

(√
Pi −

√
Qi
)2

and in the continuous case if p and q are

the corresponding densities, then D2
H(P |Q) =

∫ (√
p(x)−

√
q(x)

)2
dx. It is useful to note that

D2
H(P |Q) ≤ KL(P |Q).

We will see that DEC of class M is a crucial complexity measure that yields both upper and
lower bounds on regret for general DMSO problems. Before we provide these, a slight digression
into online log loss regression will be useful.

2 Regret Minimization for Log-Loss

Say we have a general set X from which we receive our observations. The log loss game is as follows.
On every round t, the learner first provide a distribution qt ∈ ∆(X), then the observation for that
round xt ∈ X is given to us. At this point, we observe xt and suffer the log-loss log(1/qt(xt)).
Given a class F ⊆ ∆(X), our goal is to minimize regret w.r.t. to this class F given by

Reglogloss
n (F) =

1

n

n∑
t=1

log(1/qt(xt))− inf
f∈F

1

n

n∑
t=1

log(1/f(xt))

That is we want an algorithm where `(qt, xt) = log(1/qt(xt)). A generic algorithm we looked at for
the case when the set of models is finite is the exponential weights algorithm where at time t, the

2

probability pt ∈ ∆(F) we pick is given by pt(f) ∝ exp(−η
∑t−1

j=1 `(f, xt)). However note that if we
pick f according to law pt and since f itself is a distribution over X , we can instead directly pick
qt as the implied distribution over X . That is, we can pick qt ∈ ∆(X) as Ef∼pt [f].

It can be shown that this algorithm works for log loss and that too with a fast rate for regret
bound. In fact, we will show that the algorithm works with η = 1.

Lemma 2. IF we use pt(f) ∝ exp(−
∑t−1

j=1 `(f, xt)) and set qt = Ef∼pt [f] as our probability over
X on round t, then for this algorithm we have that for this algorithm,

Regn(F) ≤ log(|F|)
n

Proof. As before, we first use soft-max to see that

− inf
f∈F

n∑
t=1

log(1/f(xt)) ≤ log

∑
f∈F

exp

(
−

n∑
t=1

`(f, xt)

)

3

Now note that if we consider round n, then we have that on the last round pn(f) ∝ exp(−
∑n−1

j=1 `(f, xj))

n∑
t=1

`(qt, xt)− inf
f∈F

1

n

n∑
t=1

log(1/f(xt))

≤
n∑
t=1

`(qt, xt) + log

∑
f∈F

exp

(
−

n∑
t=1

`(f, xt)

)
=

n∑
t=1

`(qt, xt) + log

∑
f∈F

exp

(
−
n−1∑
t=1

`(f, xt)

)
· exp(−`(f, xn))

=

n∑
t=1

`(qt, xt) + log

∑f∈F exp
(
−
∑n−1

t=1 `(f, xt)
)
· exp(−`(f, xn))∑

f∈F exp
(
−
∑n−1

t=1 `(f, xt)
)

+ log

∑
f∈F

exp

(
−
n−1∑
t=1

`(f, xt)

)
=

n∑
t=1

`(qt, xt) + log (Ef∼pn [exp(−`(f, xn))]) + log

∑
f∈F

exp

(
−
n−1∑
t=1

`(f, xt)

)
=

n∑
t=1

`(qt, xt) + log (Ef∼pn [exp(− log(1/f(xn))]) + log

∑
f∈F

exp

(
−
n−1∑
t=1

`(f, xt)

)
=

n∑
t=1

`(qt, xt) + log (Ef∼pn [f(xn)]) + log

∑
f∈F

exp

(
−
n−1∑
t=1

`(f, xt)

)
=

n∑
t=1

`(qt, xt) + log (qn(xn)) + log

∑
f∈F

exp

(
−
n−1∑
t=1

`(f, xt)

)
=

n∑
t=1

`(qt, xt)− log (1/qn(xn)) + log

∑
f∈F

exp

(
−
n−1∑
t=1

`(f, xt)

)

=

n∑
t=1

`(qt, xt)− `(qn, xn) + log

∑
f∈F

exp

(
−
n−1∑
t=1

`(f, xt)

)
=

n−1∑
t=1

`(qt, xt) + log

∑
f∈F

exp

(
−
n−1∑
t=1

`(f, xt)

)
Repeating the same steps down from n− 1 to 0 we get

n∑
t=1

`(qt, xt)− inf
f∈F

1

n

n∑
t=1

log(1/f(xt)) ≤ log (|F|)

Thus we conclude the lemma.

4

3 Upper Bound in terms of DEC

3.1 The Algorithm

The algorithm uses as black-box an online log-loss regression algorithm lets call this oracle algorithm
Alg that takes past observations and produces a distribution over this space for the next round.
Further, in view of what we saw in the previous section, we can use exponential weights algorithm
for this blackbox and when used over set of models M, we get the regret bound of log(|M|)

n . Now
given access to this algorithm, Alg, our algorithm for the DMSO problem is given below:

For t = 1 to n do

1. Get from online regression oracle the model M̂t = Alg((π1, o1, r1), . . . , (πt−1, ot−1, rt−1))

2. pt = argmin
p∈∆(Π)

supM∈M Eπ∼p
[
fM (πM)− fM (π)− γD2

H(M(π), M̂t(π))
]

3. Draw πt ∼ pt and receive rewards and observations (rt, ot) ∼M∗(πt)

End For

3.2 The Upper Bound Sketch

Theorem 3. Given any DMSO problem, the algorithm described above enjoys the regret bound

E [Regn] ≤ inf
γ
{Decγ(M) + γLoglossBndn}

where LoglossBndn is the bound of the log loss regression blackbox algorithm. If specifically we use
exponential weights and M were finite then we get

E [Regn] ≤ inf
γ

{
Decγ(M) + γ

log(|M|)
n

}
Proof Sketch.

E [Regn] = E

[
1

n

n∑
t=1

Eπt∼pt [f∗(π∗)− f∗(πt)]

]

= E

[
1

n

n∑
t=1

Eπt∼pt
[
f∗(π∗)− f∗(πt)− γD2

H(M∗(πt)|M̂t(πt))
]

+ γ
1

n

n∑
t=1

Eπt∼pt
[
D2
H(M∗(πt)|M̂t(πt))

]]

≤ E

[
1

n

n∑
t=1

sup
M∈M

Eπt∼pt
[
fM (πM)− fM (πt)− γD2

H(M(πt)|M̂t(πt))
]]

+ γE

[
1

n

n∑
t=1

Eπt∼pt
[
D2
H(M∗(πt)|M̂t(πt))

]]
By definition of pt,

= E

[
1

n

n∑
t=1

inf
pt∈∆(Π)

sup
M∈M

Eπt∼pt
[
fM (πM)− fM (πt)− γD2

H(M(πt)|M̂t(πt))
]]

+ γ
1

n
E

[
n∑
t=1

Eπt∼pt
[
D2
H(M∗(πt)|M̂t(πt))

]]

5

But by definition of DEC

=
1

n

n∑
t=1

E
[
Decγ(M, M̂t)

]
+ γE

[
1

n

n∑
t=1

Eπt∼pt
[
D2
H(M∗(πt)|M̂t(πt))

]]

≤ Decγ(M) + γE

[
1

n

n∑
t=1

Eπt∼pt
[
D2
H(M∗(πt)|M̂t(πt))

]]

≤ Decγ(M) + γE

[
1

n

n∑
t=1

Eπt∼pt
[
KL(M∗(πt)|M̂t(πt))

]]

= Decγ(M) + γE

[
1

n

n∑
t=1

Eπt∼pt

[
E(rt,ot)∼M∗(πt)

[
log

(
M∗(πt)(rt, ot)

M̂t(πt)(rt, ot)

)]]]

= Decγ(M) + γE

[
1

n

n∑
t=1

log

(
M∗(πt)(rt, ot)

M̂t(πt)(rt, ot)

)]

= Decγ(M) + γE

[
1

n

n∑
t=1

log

(
1

M̂t(πt)(rt, ot)

)
− 1

n

n∑
t=1

log

(
1

M∗(πt)(rt, ot)

)]

≤ Decγ(M) + γE

[
1

n

n∑
t=1

log

(
1

M̂t(πt)(rt, ot)

)
− inf
M∈M

1

n

n∑
t=1

log

(
1

M(πt)(rt, ot)

)]
≤ Decγ(M) + γLoglossBndn

Setting γ to be the minimizer of the above we conclude the Theorem.

4 Lower Bound in terms of DEC

Theorem 4. For any algorithm used for DMSO problems, we have the following lower bound in
probability

Regn ≥ max
γ>0

min
{

Decγ,O(γ/(n log(n)))(M),
γ

n

}
In the above

Decγ,ε) = sup
M∈M

Decγ(Mε(M),M)

where Mε(M) = {M ′ ∈M : fM (πM) ≥ fM ′(πM ′)− ε}

6

