
Machine Learning Theory (CS 6783)

Lecture 21: Oracle Efficient Contextual Bandits

1 ERM Oracle Efficient Contextual Bandits

Recall the contextual Bandit problem given by protocol

• For t = 1 to n

– Nature produces context xt ∈ X
– Algorithm picks arm It ∈ [N] in a possibly randomized fashion while nature produces

loss vector `t

– Learner suffers loss `t[It]

Goal: Minimize regret w.r.t. class of policies F ⊂ [N]X given by

Regn =
1

n

n∑
t=1

`t[It]− inf
f∈F

1

n

n∑
t=1

`t[f(xt)]

Assume (xt, `t) ∼ D some fixed distribution.
We would like our algorithm to make a small number of calls to the ERM oracle that, given

samples (x1, ˜̀
1), . . . , (xm, ˜̀

m) can return ERM policy given by:

f̂ERM = argmin
f∈F

m∑
t=1

˜̀
t[f(xt)]

We already saw that a plain ε-greedy algorithm would give us a regret bound of O
(
N log |F|

n

)1/3
with very few calls to an ERM oracle. Before seeing how we can get an ERM oracle efficient
algorithm with optimal regret bound, we will first see an algorithm that is computationally as bad
as EXP4 but enjoys optimal bound on regret like EXP4 for the stochastic case. This algorithm
called policy elimination will help us build ideas for the optimal oracle efficient algorithm.

1.1 Policy Elimination

For the ε-greedy algorithm on every round picked the policy that optimized sum of past estimated
losses with probability 1− γ and with probability γ picked the uniform distribution. In a sense we
will use the same idea here, but instead of picking with probability 1 − γ the ERM, we will pick
with probability 1 − γ, a distribution qt(·|xt) and with probability γ uniformly explore as before.
But the key idea we will use are, first the distribution qt(·|xt) will be a distribution over only a
set Ft at time t that has low estimated regret so far to begin with. Further the distribution qt we

1

will pick will be such that the variance of estimated losses under the distribution of our draw is
bounded by N . These together will ensure optimal regret bound.

Policy Elimination Algorithm:

Initialize F1 = F , define εt =

√
N log(|F|n/δ)

t and γt = min

{
1,

√
N log(|F|n/δ)

2t

}
For t = 1 to n

Pick distribution qt ∈ ∆(Ft) s.t.

∀f ∈ Ft, Ex∼D

[
1

(1− γ)
∑

f ′∈F :f ′(x)=f(x) qt(f
′) + γ/N

]
≤ 2N

Draw policy ft ∼ qt and set at = ft(xt)

Observe `t[at]

Build estimate ˜̀
t and update Ft+1 =

{
f ′ ∈ Ft : 1

t

∑t
j=1

˜̀
j [f
′(xt)]− inff∈Ft

1
t

∑t
j=1

˜̀
j [f(xt)] ≤ 2εt+1

}
End For

Theorem 1. With probability at least 1− δ, for the policy elimination algorithm,

Regn ≤ O

(√
N log(|F|n/δ)

n

)
Proof. The proof of the above theorem is obvious if we can show the following statement. With
probability 1− δ, for any t and any f ∈ Ft,

E(x,`)∼D [`[f(x)]]− inf
f ′∈F

E(x,`)∼D
[
`[f ′(x)]

]
≤ 4εt

The idea then is that since we are picking ft ∈ Ft and since every f ∈ Ft has small excess risk of
4εt. Hence, we can conclude that, with probability 1− δ,

1

n

n∑
t=1

`t[at]− inf
f∈F

1

n

n∑
t=1

`t[f(xt)] ≤
1

n

n∑
t=1

E(x,`)∼D [`[ft(x)]]− inf
f∈F

E(x,`)∼D [`[f(x)]] +

√
log(|F|/δ)

n

≤ 4
1

n

n∑
t=1

εt +

√
log(|F|/δ)

n

≤ O

(√
N log(|F|n/δ)

n

)

Lemma 2. With probability at least 1− δ, for any t ∈ [n],

sup
f∈Ft

∣∣∣∣∣∣1t
t∑

j=1

˜̀
j [f(xj)]− E(x,`)∼D [`[f(x)]]

∣∣∣∣∣∣ ≤ 2εt

2

and we have that with probability 1− δ, for any t and any f ∈ Ft,

E(x,`)∼D [`[f(x)]]− inf
f∗∈F

E(x,`)∼D [`[f∗(x)]] ≤ 4εt

Proof. First note that for any t, if we consider any j ≤ t, for any f ∈ Ft, ˜̀
j [f(xj)] is an unbiased

estimator of E(`,x) [`[f(x)]]. Hence, for any f ∈ Ft, 1
t

∑t
j=1

˜̀
j [f(xj)]−E(x,`)∼D [`[f(x)]] is an average

of martingale difference sequence. Just like for iid random variables we have the Bernstein con-
centration inequality, we have for martingale difference sequences a concentration called Freedman
inequality which states the following. Let (Yt)t∈N be a martingale difference sequence such that Yt
is bounded by B and such that Et−1

[
Y 2
t

]
≤ Vt, then for any δ > 0, with probability at least 1− δ,

for any t ∣∣∣∣∣∣1t
t∑

j=1

Yj

∣∣∣∣∣∣ ≤
√√√√(∑t

j=1 Vt

)
log(log(t)/δ)

n
+
B log(log(t)/δ)

t

Now note that taking Y f
j = ˜̀

j [f(xj)]−E(x,`)∼D [`[f(x)]] and using the above Freedman’s inequality
with union bound over F we get, that with probability 1− δ, for any t ∈ [n] and any f ∈ F ,

sup
f∈Ft

∣∣∣∣∣∣1t
t∑

j=1

˜̀
j [f(xj)]− E(x,`)∼D [`[f(x)]]

∣∣∣∣∣∣ = sup
f∈F

∣∣∣∣∣∣1t
t∑

j=1

Y f
j

∣∣∣∣∣∣
≤

√√√√(supf∈F
∑t

j=1 V
f
t

)
log(n|F|/δ)

n
+
B log(n|F|/δ)

t

However note that, |˜̀j [f(xj)]− E(x,`)∼D [`[f(x)]] | ≤ N
γ ≤

√
Nn

log(n|F|/δ) = B and,

Et−1
[
Y 2
t

]
≤ Et−1

∑
a∈[N]

((1− γ)qt(a|xt) + γ/N) ˜̀
t[a]2

 ≤ Ex∼D

[
1

(1− γ)
∑

f ′∈F :f ′(x)=f(x) qt(f
′) + γ/N

]
≤ N

Hence we have that,

sup
f∈Ft

∣∣∣∣∣∣1t
t∑

j=1

˜̀
j [f(xj)]− E(x,`)∼D [`[f(x)]]

∣∣∣∣∣∣ ≤ O
(√

N log(n|F|/δ)
t

)
= 2εt

Next, note that since f∗ ∈ F is the minimizes of expected loss, we have that with probability 1− δ,
f∗ ∈ Ft for any t. Now using the above inequality, we get that with probability 1 − δ, for any
f ∈ F , ∣∣∣∣∣∣1t

t∑
j=1

˜̀
j [f(xj)]− E(x,`)∼D [`[f(x)]]

∣∣∣∣∣∣ ≤ εt
and ∣∣∣∣∣∣1t

t∑
j=1

˜̀
j [f
∗(xj)]− E(x,`)∼D [`[f∗(x)]]

∣∣∣∣∣∣ ≤ εt
3

But by definition of Ft, we only retain those f ’s for which average estimated loss is close to that
of ERM over Ft and so, all the average estimates losses within Ft are within εt factor and so,

E(x,`)∼D [`[f(x)]]− inf
f∗∈F

E(x,`)∼D [`[f∗(x)]] ≤ 4εt

This completes the proof.

Note that the above algorithm is optimal in terms of its regret bound with high probability.
However, since we need to maintain Ft the set of good experts on every round, the algorithm is as
intractable as EXP4. But we can use the idea from this policy elimination algorithm to develop an
efficient algorithm.

1.2 Oracle Efficient Algorithm

A key reason why we needed to maintain Ft in policy elimination was that we had to find a
distribution that had low variance of N for every policy under consideration. Hence the only way
we could so this and still have a distribution that had good expected regret was by shrinking Ft
to only good policies. A soft version of policy elimination one could consider could have on every
round a distribution over entire F but then have variance bound of N only for good policies and
for bad policies allow much larger variance (of

√
t on round t for instance). In fact the soft policy

elimination algorithm is as follows: Soft Policy Elimination Algorithm:

For t = 1 to n

Pick distribution qt ∈ ∆(F) s.t.

Ef∼qt

1

t

t∑
j=1

˜̀
j [f(xt)]

− inf
f∗∈F

1

t

t∑
j=1

˜̀
j [f
∗(xt)] ≤

√
N log(|F|n)

n

and for every f ∈ F ,

Ex∼D

[
1

(1− γ)
∑

f ′∈F :f ′(x)=f(x) qt(f
′) + γ/N

]
≤ 2N+

√
N log(|F |n/δ)√

t

t∑
j=1

˜̀
j [f(xt)]− inf

f∗∈F

1

t

t∑
j=1

˜̀
j [f
∗(xt)]

Draw policy ft ∼ qt and set at = ft(xt)

Observe `t[at] and build estimate ˜̀
t based on it.

End For

The key idea is that expected regret under the distribution is bounded by what we would like and

under this distribution, the variance of loss estimated for any f ∈ F scales as order N+
√
t R̂egt(f)

where R̂egt(f) is the estimated regret of policy f . The idea being that if a policy has large regret
then variance for that policy can be quite large. For instance, policies with constant regret allow√
t additive factor on variance. IF we use the Freedman inequality with this updated bound on

variance we get the following lemma.

4

Lemma 3. With probability 1− δ, for any t and any f ∈ F ,

1

t

t∑
j=1

˜̀
j [f(xj)]− inf

f ′∈F

1

t

t∑
j=1

˜̀
j [f
′(xj)] ≤ 2

(
E(x,`)∼D [`[f(x)]]− inf

f∗∈F
E(x,`)∼D [`[f∗(x)]]

)
+

√
N log(|F|n/δ)

t

and

E(x,`)∼D [`[f(x)]]− inf
f∗∈F

E(x,`)∼D [`[f∗(x)]] ≤ 2

1

t

t∑
j=1

˜̀
j [f(xj)]− inf

f ′∈F

1

t

t∑
j=1

˜̀
j [f
′(xj)]

+

√
N log(|F|n/δ)

t

The proof uses the same steps as the proof of lemma 2 except that for every f ∈ F we use

the variance of f ∈ F that is bounded as N +
√
t R̂egt(f) and then simply apply the fact that√

ab ≤ a/2 + b/2 to get the factor 2 on regret and estimated regrets. However, since qt the
distribution over F that we get is such that

Ef∼qt

1

t

t∑
j=1

˜̀
j [f(xt)]

− inf
f∗∈F

1

t

t∑
j=1

˜̀
j [f
∗(xt)] ≤

√
N log(|F|n/δ)

t

, combined with the above it implies that

Ef∼qt
[
E(x,`)∼D [`[f(x)]]

]
− inf
f∗∈F

E(x,`)∼D [`[f∗(x)]] ≤ 2

√
N log(|F|n/δ)

t

Using this we can conclude with simple concentration that with probability 1− δ,

Regn ≤ O

(√
N log(|F|n/δ)

n

)

which is the optimal bound.
But have we done anything useful at all? note that qt is still a distribution over F just like in

EXP4 case. So why can we hope to implement this method oracle efficiently. Well while I shall skip
the proof for this, the idea is that qt that we need to get will be a distribution that is sparse and
has only a small support in F . Further, this sparse distribution can be computed by performing
coordinate descent and each coordinate can be computed using the ERM oracle. Hence overall we
can compute this distribution qt which is over a large set in an efficient manner.

2 Online Square Loss Regression Oracle

While the above approach does give an algorithm that is ERM oracle efficient, the above requires
finding the ERM. However note that even if we had only two actions, the ERM optimization can be
as bad as optimizing w.r.t. binary classification loss which in most cases is again computationally
hard. The typical way out of this for classification is to replace the zero-one loss by some nicer losses
like square loss or logistic loss etc. In this section, under the so called realizability assumption we
can show that one can get contextual bandit algorithms that are online squared loss regression oracle
efficient. To be able to achieve this, the algorithms require the following realizability assumption.

5

Assumption 4. Assume that there is a class L ⊂ RX×[N] such that for some g∗ ∈ L, we have that
for any x ∈ X and a ∈ [N],

E [`t(a)|xt = x] = g∗(x, a)

The assumption tells us that the conditional expected loss of any action given a context is mod-
eled will by a member g∗ of some class L. The rough idea then is to learn this model in some sense
and take actions that are (close to) optimal w.r.t. this model given a context. More specifically,
on every round we make a prediction of the loss given context for every action based on our ability
to solve online squared loss regression w.r.t. class L. Then we take a distribution that is skewed
towards making the best decision based on this model for losses. Specifically we use the following
algorithm.

SquareCB:

Set γ =
√

4N
RegSQn(L)

For t = 1 to n

Receive context xt ∈ X
For each action a ∈ [N], compute ŷt[a] = ŷt(xt, a) by feeding xt, a as input to the square
loss regression algorithm for round t

Set bt = argmin
b∈[N]

ŷt[b]

∀a 6= bt, set pt(a) = 1
N+γ(ŷt[a]−ŷt[bt]) , set pt(bt) = 1−

∑
a6=bt pt(a)

Draw action at ∼ pt and observe `t[at]

Use online regression algorithm by feeding it input instance (xt, at) and output `t[at]

End For

Theorem 5. Assume we have access to an online regression oracle that guarantees that for any
sequence of context action pairs (x1, a1), . . . , (xn, an) as input and any labels y1, . . . , yn produced
possibly by an adversary, we have an online learning algorithm that guarantees that:

1

n

n∑
t=1

((ŷt − yt)2 − inf
g∈L

1

n

n∑
t=1

(g∗(at, xt)− yt)2 ≤ RegSQn(L)

where RegSQn(L) is the bound guaranteed for online squared loss regression against L. Then, the
Square CB algorithm enjoys the regret bound,

E [Regn] ≤
√

3N RegSQn(L)

where

6

Proof.

E [Regn] = E

[
1

n

n∑
t=1

`t(at)−
1

n

n∑
t=1

`t(f
∗(xt))

]

= E

[
1

n

n∑
t=1

E [`t(at)|x = xt]−
1

n

n∑
t=1

E [`t(f
∗(xt))|x = xt]

]

= E

[
1

n

n∑
t=1

g∗(at, xt)−
1

n

n∑
t=1

g∗(f∗(xt), xt)

]

= E

[
1

n

n∑
t=1

(
g∗(at, xt)− g∗(f∗(xt), xt)−

γ

2
(ŷt(xt, at)− g∗(at, xt))2

)]

+
γ

2
E

[
1

n

n∑
t=1

(ŷt(xt, at)− g∗(at, xt))2
]

But due to realizability, (ŷt(xt, at)− g∗(at, xt))2 = E
[
(ŷt(xt, at)− `t[at])2 − (g∗(at, xt)− `t[at])2 |xt = x

]
= E

[
1

n

n∑
t=1

(
g∗(at, xt)− g∗(f∗(xt), xt)−

γ

2
(ŷt(xt, at)− g∗(at, xt))2

)]

+
γ

2
E

[
1

n

n∑
t=1

((ŷt(xt, at)− `t[at])2 − (g∗(at, xt)− `t[at])2
]

replacing g∗(·, xt) by taking supremum over vector g∗ ∈ [0, 1]N for each round, and replacing f∗(xt)
by macimum a∗ ∈ [N] we move to upper bound,

≤ 1

n

n∑
t=1

sup
g∗∈[0,1]N

max
a∗∈[N]

Eat∼pt
[
g∗[at]− g∗[a∗]−

γ

2
(ŷt(xt, at)− g∗[at])2

]
+
γ

2
E

[
1

n

n∑
t=1

((ŷt(xt, at)− `t[at])2 − (g∗(at, xt)− `t[at])2
]

≤ 1

n

n∑
t=1

sup
g∗∈[0,1]N

max
a∗∈[N]

Eat∼pt
[
g∗[at]− g∗[a∗]−

γ

2
(ŷt(xt, at)− g∗[at])2

]
+
γ

2
RegSQn(L)

where in the above, RegSQn(L) is the regret bound for online square loss regression w.r.t. loss class
L. It can be shown that for the choice of distribution pt (shown in next lemma), we have that for
any t:

sup
g∗∈[0,1]N

max
a∗∈[N]

Eat∼pt
[
g∗[at]− g∗[a∗]−

γ

2
(ŷt(xt, at)− g∗[at])2

]
≤ 3N

2γ

Using this we can conclude that:

E [Regn] ≤ 3N

2γ
+
γ

2
RegSQn(L)

7

using γ =
√

3N
RegSQn(L)

we obtain that:

E [Regn] ≤
√

3N RegSQn(L)

The point to note is that for a finite class L, it turns out the exponential weights algorithm can
actually ensure that RegSQn(L) ≤ log |L|

n and so for finite L class one has,

E [Regn] ≤
√

2N log |L|
n

Lemma 6. For any vector ŷ ∈ [0, 1]N , let b∗ = argmin
a∈[N]

ŷ[a]. Let distribution p ∈ ∆N be given by,

∀a 6= b∗, p(a) = 1
N+γ(ŷ[a]−ŷ[b∗]) and p(b∗) = 1−

∑
a6=b∗ p(a), then,

sup
g∈[0,1]N

max
a∗∈[N]

Ea∼p
[
g[a]− g[a∗]− γ

2
(ŷ[a]− g[a])2

]
≤ 3N

2γ

Proof. Now consider any a∗ ∈ [N] and any g ∈ [0, 1]N . Note that,

Ea∼p
[
g[a]− g[a∗]− γ

2
(ŷ[a]− g[a])2

]
=
∑
a∈[A]

p(a)
(
g[a]− g[a∗]− γ

2
(ŷ[a]− g[a])2

)
=
∑
a6=a∗

p(a)
(
g[a]− g[a∗]− γ

2
(ŷ[a]− g[a])2

)
− p(a∗)γ

2
(ŷ[a∗]− g[a∗])2

=
∑
a6=a∗

p(a)
(
g[a]− ŷ[a] + ŷ[a]− g[a∗]− γ

2
(ŷ[a]− g[a])2

)
− p(a∗)γ

2
(ŷ[a∗]− g[a∗])2

But now note that g[a]− ŷ[a] ≤ γ
2 (ŷ[a]− g[a])2 + 1

2γ and so we have,

Ea∼p
[
g[a]− g[a∗]− γ

2
(ŷ[a]− g[a])2

]
=
∑
a6=a∗

p(a)
(
g[a]− ŷ[a] + ŷ[a]− g[a∗]− γ

2
(ŷ[a]− g[a])2

)
− p(a∗)γ

2
(ŷ[a∗]− g[a∗])2

≤
∑
a6=a∗

p(a)

(
ŷ[a]− g[a∗] +

1

2γ

)
− p(a∗)γ

2
(ŷ[a∗]− g[a∗])2

=
∑
a6=a∗

p(a) (ŷ[a]− g[a∗]) +
1− p(a∗)

2γ
− p(a∗)γ

2
(ŷ[a∗]− g[a∗])2

=
∑
a6=a∗

p(a) (ŷ[a]− ŷ[a∗] + ŷ[a∗]− g[a∗]) +
1− p(a∗)

2γ
− p(a∗)γ

2
(ŷ[a∗]− g[a∗])2

=
∑
a6=a∗

p(a) (ŷ[a]− ŷ[a∗]) + (1− p[a∗]) (ŷ[a∗]− g[a∗]) +
1− p(a∗)

2γ
− p(a∗)γ

2
(ŷ[a∗]− g[a∗])2

=
∑
a6=a∗

p(a) (ŷ[a]− ŷ[a∗]) + (1− p[a∗])
(
ŷ[a∗]− g[a∗]− p(a∗)γ

2(1− p[a∗])
(ŷ[a∗]− g[a∗])2

)
+

1− p(a∗)
2γ

8

Again using AM-GM to note that
(
ŷ[a∗]− g[a∗]− p(a∗)γ

2(1−p[a∗])(ŷ[a∗]− g[a∗])2
)
≤ 1−p(a∗)

2γp(a∗) we conclude

that,

≤
∑
a6=a∗

p(a) (ŷ[a]− ŷ[a∗]) +
(1− p(a∗))2

2γp(a∗)
+

1− p(a∗)
2γ

=
∑
a6=a∗

p(a) (ŷ[a]− ŷ[a∗]) +
(1− p(a∗))

2p(a∗)γ

Recall that b∗ = argmin
a∈[N]

ŷ[a],

=
∑
a6=a∗

p(a) (ŷ[a]− ŷ[b∗] + ŷ[b∗]− ŷ[a∗]) +
(1− p(a∗))

2p(a∗)γ

=
∑
a6=a∗

p(a) (ŷ[a]− ŷ[b∗]) + (1− p(a∗)) (ŷ[b∗]− ŷ[a∗]) +
(1− p(a∗))

2p(a∗)γ

=
N∑
a=1

p(a) (ŷ[a]− ŷ[b∗])− (ŷ[a∗]− ŷ[b∗]) +
(1− p(a∗))

2p(a∗)γ

=
∑
a:a6=b∗

(ŷ[a]− ŷ[b∗])

N + γ((ŷ[a]− ŷ[b∗]))
− (ŷ[a∗]− ŷ[b∗]) +

(1− p(a∗))
2p(a∗)γ

=
∑
a:a6=b∗

1
N

(ŷ[a]−ŷ[b∗]) + γ
− (ŷ[a∗]− ŷ[b∗]) +

(1− p(a∗))
2p(a∗)γ

since each (ŷ[a]− ŷ[b∗]) ≤ 1,

≤ N − 1

N + γ
− (ŷ[a∗]− ŷ[b∗]) +

(1− p(a∗))
2p(a∗)γ

≤ N − 1

N + γ
+ max

{
(1− p(b∗))

2p(b∗)γ
,max
a6=b∗

{
(1− p(a))

2p(a)γ
− (ŷ[a]− ŷ[b∗])

}}
=
N − 1

N + γ
+ max

{
(1− p(b∗))

2p(b∗)γ
,max
a6=b∗

{
N + γ (ŷ[a]− ŷ[b∗])

2γ
− 1

2γ
− (ŷ[a]− ŷ[b∗])

}}
=
N − 1

N + γ
+ max

{
(1− p(b∗))

2p(b∗)γ
,max
a6=b∗

{
N − 1

2γ
− 1

2
(ŷ[a]− ŷ[b∗])

}}
Note that p(b∗) ≥ 1/N because we are picking b∗ with highest probability, hence

≤ N − 1

N + γ
+ max

{
N − 1

2γ
,max
a6=b∗

{
N − 1

2γ
− 1

2
(ŷ[a]− ŷ[b∗])

}}
=
N − 1

N + γ
+
N − 1

2γ
≤

3
2(N − 1)

γ

9

