
Machine Learning Theory (CS 6783)

Lecture 15: Online Mirror Descent contd.

1 Recap

• Mirror descent update :

∇R(ŷ′t+1) = ∇R(ŷt)− η∇t & ŷt+1 = argmin
ŷ

∆R(ŷ, ŷt+1)

• If R is 1-strongly convex w.r.t. some norm ‖·‖ (and ‖·‖∗ its dual) then using MD, for linear
game (convex Lipschitz) we get

Regn ≤ O

√(supf∈F R(f)) · sup∇∈D ‖∇‖
2
∗

n


Structure of F and D captured via (supf∈F R(f)) and sup∇∈D ‖∇‖

2
∗, Eg. in the experts

setting using negative entropy, R(f) =
∑N

i=1 f(i) log f(i) + log(N) MD recovers exponential
weights algorithm.

• If Losses are λ-strongly convex w.r.t. `2 norm them using GD with step size ηt = 1/λt we get

Regn ≤ O

(
sup∇∈D ‖∇‖

2
∗ log n

λn

)

2 Exp-concave losses and Online Newton Method

All losses are not made equal, some are more special! We saw how one can get faster rates for
strongly convex losses. However strong convexity of the loss is a rather strong assumption. It
is possible to get faster rates for losses that are not strongly convex but still have some nice
properties. As an example consider linear prediction with squared loss in d dimensions. That is
`(f, (x, y)) = (f>x− y)2. This loss is not strongly convex as a function of f w.r.t. any norm (don’t
confuse this with strong convexity of (ŷ − y)2 w.r.t. ŷ). However this loss does have curvature in
the direction we care about.

Throughout this subsection assume that F ⊂ Rd s.t. ‖f‖2 ≤ 1 .

Assumption 1. Assume that the loss ` is such that, for any z and any f, f ′ ∈ F ,

`(f ′, z) ≤ `(f, z) +
〈
∇`(f ′, z), f ′ − f

〉
−β

2
(f ′ − f)>

(
∇`(f ′, z)

) (
∇`(f ′, z)

)>
(f ′ − f)
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A sufficient condition for the above is that loss ` is what is referred to as exp-concave and
1-Lipschitz (ie. ‖∇`(f, z)‖2 ≤ 1). ` is said to be α-exp-concave if for all z, exp(−α`(·, z)) is a
concave function. In this case λ ≤ 1

2 min{14 , α}
Examples : linear prediction with squared loss β = 1, Logistic loss β = O(e−R), . . .

Algorithm : Use arbitrary ŷ1 ∈ F and use A1 = Id (Id is identity matrix)

At+1 = At +∇>t ∇t ŷ′t+1 = ŷt − ηA−1t+1∇t ŷt+1 = argmin
ŷ∈F

(ŷ − ŷ′t+1)
>At+1(ŷ − ŷ′t+1)

Think of the above as MD with R varying over time. Specifically Rt(f) = 1
2f
>At+1f . In this

case ∆Rt(a|b) = 1
2(a− b)>At+1(a− b).

Claim 2. Using η = 1
β and σ = 1

β2 if we run the online Newton method, we get

Rn ≤ O
(
d log(n+ 1)

2nβ

)
Proof sketch. Define Rt(f) = 1

2f
>At+1f and view the algorithm as

∇Rt(ŷ′t+1) = ∇Rt(ŷt)− η∇t ŷt+1 = argmin
ŷ∈F

∆Rt(ŷ|ŷ′t+1)

Now note that for any f∗ ∈ F ,

`(ŷt, zt)− `(f∗, zt) ≤ 〈∇t, ŷt − f∗〉−
1

η

(
∆Rt(f

∗|ŷt)−∆Rt−1(f∗|ŷt)
)

Following the bound from MD proof,

〈∇t, ŷt − f∗〉 ≤
〈
∇t, ŷt − ŷ′t+1

〉
+

1

η

(
∆Rt(f

∗|ŷt)−∆Rt(f
∗|ŷ′t+1)−∆Rt(ŷt|ŷ′t+1)

)
Combining we get,

`(ŷt, zt)− `(f∗, zt) ≤
〈
∇t, ŷt − ŷ′t+1

〉
+

1

η

(
∆Rt(f

∗|ŷt)−∆Rt(f
∗|ŷ′t+1)−∆Rt(ŷt|ŷ′t+1)

)
−1

η

(
∆Rt(f

∗|ŷt)−∆Rt−1(f∗|ŷt)
)

=
〈
∇t, ŷt − ŷ′t+1

〉
+

1

η

(
∆Rt−1(f∗|ŷt)−∆Rt(f

∗|ŷ′t+1)−∆Rt(ŷt|ŷ′t+1)
)

≤ η

2
‖∇t‖2A−1

t+1
+

1

2η

∥∥ŷt − ŷ′t+1

∥∥2
At+1

+
1

η

(
∆Rt−1(f∗|ŷt)−∆Rt(f

∗|ŷ′t+1)−∆Rt(ŷt|ŷ′t+1)
)

=
η

2
‖∇t‖2A−1

t+1
+

1

η

(
∆Rt−1(f∗|ŷt)−∆Rt(f

∗|ŷ′t+1)
)

≤ η

2
‖∇t‖2A−1

t+1
+

1

η

(
∆Rt−1(f∗|ŷt)−∆Rt(f

∗|ŷt+1)
)
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Summing up and noticing the telescoping sum we get,

nRegn ≤
η

2

n∑
t=1

∇>t
(
At +∇t∇>t

)−1
∇t +

1

η
∆R1(f∗|ŷ1)

=
η

2

n∑
t=1

∇>t
(
At +∇t∇>t

)−1
∇t +

σ

η
‖f∗ − ŷ1‖22

≤ 1

2β

n∑
t=1

∇>t
(
At +∇t∇>t

)−1
∇t +

4

β

To conclude the proof note that by matrix-determinant identity we have that for any vector x and
any invertible matrix B, det(B − xx>) = det(B)(1− x>B−1x) and so using B = At +∇t∇>t and
x = ∇t we have:

∇>t
(
At +∇t∇>t

)−1
∇t = 1− det(At)

det(At +∇t∇>t )
= 1− det(At)

det(At+1)
≤ log

(
det(At+1)

det(At)

)
Hence,

nRegn ≤
1

2β
log

(
det(An+1)

det(A1)

)
+

4

β
=

1

2β

 d∑
j=1

log(1 + λj(An+1)) + 4

 ≤ 1

2β
(d log(n) + 4)

3 Mirror Descent and Local Norms

Lemma 3. For any twice differentiable convex R, if we run mirror descent using step size η, then

nRegn(∇1, . . .∇n) ≤ η

2

n∑
t=1

‖∇t‖2∇2R(zt)−1 +
1

η
sup
f∈F

∆R(f |ŷ1)

where zt is some convex combination of ŷt and ŷ′t+1 (here matrix M , ‖x‖2M = x>Mx)

Proof. We will recall the upper bound from the mirror descent proof of the form:

〈∇t, ŷt − f∗〉 ≤
〈
∇t, ŷt − ŷ′t+1

〉
+

1

η

(
∆R(f∗|ŷt)−∆R(f∗|ŷt+1)−∆R(ŷ′t+1|ŷt)

)
Now the key trick is that we start with the definition of Bregman divergence and use Taylor’s
theorem. Note that:

∆R(ŷ′t+1|ŷt) = R(ŷ′t+1)−R(ŷt)−
〈
R(ŷt), ŷ

′
t+1 − ŷt

〉
Now using Taylor’s theorem (+ intermediate value theorem) there exists a point zt that is some
convex combination of ŷ′t+1 and ŷt such that

R(ŷ′t+1)−R(ŷt)−
〈
R(ŷt), ŷ

′
t+1 − ŷt

〉
=

1

2
(ŷ′t+1 − ŷt)

>∇2R(zt)(ŷ
′
t+1 − ŷt) =

1

2
‖ŷ′t+1 − ŷt‖2∇2R(zt)
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Hence using this we can conclude that

〈∇t, ŷt − f∗〉 ≤
〈
∇t, ŷt − ŷ′t+1

〉
+

1

η
(∆R(f∗|ŷt)−∆R(f∗|ŷt+1))−

1

2η
‖ŷ′t+1 − ŷt‖2∇2R(zt)

Now note that for any invertible matrix M , ‖ · ‖M−1 is the dual norm to the norm ‖ · ‖M and hence
using the fact (as we did in the earlier mirror descent proof) that〈

∇t, ŷt − ŷ′t+1

〉
≤ η

2
‖∇t‖2∇2R(zt)−1 +

1

2η
‖ŷ′t+1 − ŷt‖2∇2R(zt)

we conclude that

〈∇t, ŷt − f∗〉 ≤
η

2
‖∇t‖2∇2R(zt)−1 +

1

η
(∆R(f∗|ŷt)−∆R(f∗|ŷt+1))

Summing over t and simplifying the telescoping sum over the Bregman divergences we we obtain
that

nRegn(∇1, . . .∇n) ≤ η

2

n∑
t=1

‖∇t‖2∇2R(zt)−1 +
1

η
(∆R(f∗|ŷ1)−∆R(f∗|ŷn+1))

≤ η

2

n∑
t=1

‖∇t‖2∇2R(zt)−1 +
1

η
sup
f∈F

∆R(f |ŷ1)

When is this result useful? Well, if hessian is a Lipschitz continuous function then one can
further bound ‖∇t‖∇2R(zt)−1 approximately by say ‖∇t‖∇2R(ŷt+1)−1 since zt is between ŷt and ŷt+1

which themselves are close if η is small. We will see a concrete example of this when we come to
Bandit algorithms but for now, its a good tool to keep in mind.
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