
Machine Learning Theory (CS 6783)

Lecture 10 : Lower Bound and Optimality

1 Recap

1. For any statistical learning problem we have,

ES
[
LD(f̂erm)− inf

f∈F
LD(f)

]
≤ 2

n
ESEε

[
sup
f∈F

n∑
t=1

εt`(f(xt), yt)

]

2. For any L-Lipchitz loss

1

n
ESEε

[
sup
f∈F

n∑
t=1

εt`(f(xt), yt)

]
≤ L

n
ESEε

[
sup
f∈F

n∑
t=1

εtf(xt)

]
= ES

[
Rn(F|x1,...,xn)

]
3. For online learning, there exists a learning algorithm such that:

E [Regn] ≤ 2 sup
x,y

Eε

[
sup
f∈F

1

n

n∑
t=1

εt`(f(x(ε1:t−1)),y(ε1:t−1))

]
= 2 sup

x,y
Rsqn (` ◦ F|x,y)

where ` ◦ F|x,y = {gf : ∀t, ε ∈ {±1}n, gf (ε1:t−1) = `(f(x(ε1:t−1)),y(ε1:t−1)), f ∈ F}

4. Covering : V is an `p-cover of F on x1, . . . , xn at scale β if

∀f ∈ F , ε ∈ {±1}n,∃v ∈ V s.t.

(
1

n

n∑
t=1

|f(ε1:t−1)− v(ε1:t−1)|p
)1/p

≤ β

Np(F , β) = min{|V | : V is an `p-cover of F at scale β}

5. Pollard bound:

Rsqn (F) ≤ inf
β>0

{
β +

√
logN1(F , β)

n

}

6. Dudley Integral bound:

Rsqn (F) ≤ Dn(F) := inf
α>0

{
4α+ 10

∫ 1

α

√
logN2(F , β)

n
dβ

}
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2 Sudakov’s Theorem and Partial Converse

In this section, we show that Dudley integral complexity and Rademacher complexity are within
log factors of each other. We will show this for the classical or statistical learning versions. A
similar statement is true for the sequential counter part but we will not prove this.

To prove the classical version we first start with a result called Sudakov Minoration which we
will state below without proof.

Theorem 1. Let F ⊆ Rn. There is a universal constant c > 0 such that

Rn(F) ≥ c

log n
sup
α>0

α

√
logN2(F , α)

n

The above theorem (paraphrased) is due to Sudakov. We shall not go over its proof. But using
the above, we shall prove that Dudley integral bound is a tight bound on Rademacher complexity.

Theorem 2.
c

10 log2 n

(
Dn(F)− 4

n

)
≤ Rn(F) ≤ Dn(F)

Proof. We already showed that Rn(F) ≤ Dn(F). Now on the other hand, we have

Dn(F) = inf
α>0

{
4α+

10√
n

∫ 1

α

√
log (N2(F , δ))dδ

}
However by Sudakov’s theorem we have that for any δ > 0, we have√

logN2(F , δ)
n

≤ log(n) Rn(F)

c δ

Using this,

Dn(F) ≤ inf
α>0

{
4α+

10

c
log(n) Rn(F)

∫ 1

α

1

δ
dδ

}
= inf

α>0

{
4α+

10

c
log(n) log(1/α) Rn(F)

}
Picking α = 1

n we conclude that Dn(F) ≤ 4
n + 10

c log2(n) Rn(F). Rewriting we get that

c

10 log2 n

(
Dn(F)− 4

n

)
≤ Rn(F)

3 Lower Bound for Online Supervised Learning With Absolute
Loss

In this section we show that if one considers online supervised learning where the loss is `(y′, y) =
|y− y′|, then one can obtain a lower bound for the optimal rate in terms of sequential Rademacher
Complexity of model class F .
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Lemma 3. For any class F ⊂ [−1, 1]X , there is an adversary strategy that ensures that irrespective
of what (possibly randomized) algorithm the learner uses, the expected regret of the learner is lower
bounded as:

E [Regn] ≥ sup
x

Eε

[
1

n

n∑
t=1

εtf(x(ε1:t−1))

]
= sup

x
Rsqn (Fx)

Proof. Pick any mapping x. Now let the adversary play at round t, the input instance x(y1:t−1)
and choose label yt = εt drawn as Rademacher random variable. In this case, note that expected
regret against this adversary for any learning algorithm is given by

Eε [E [Regn]] = Eε

[
E

[
1

n

n∑
t=1

|εt − ŷt| −min
f∈F

1

n

n∑
t=1

|f(x(ε1:t−1))− εt|

]]

= E

[
1

n

n∑
t=1

Eε [|εt − ŷt|]− Eε

[
min
f∈F

1

n

n∑
t=1

|f(x(ε1:t−1))− εt|

]]

However since ŷt is trying to predict a random coin flip, Eε [|εt − ŷt|] = 1 and so,

Eε [E [Regn]] = 1− Eε

[
min
f∈F

1

n

n∑
t=1

|f(x(ε1:t−1))− εt|

]

= Eε

[
max
f∈F

{
1− 1

n

n∑
t=1

|f(x(ε1:t−1))− εt|

}]

= Eε

[
max
f∈F

1

n

n∑
t=1

(1− |f(x(ε1:t−1))− εt|)

]

However for any y ∈ {±1} and any a ∈ [−1, 1], |a− y| = 1− a · y and so,

= Eε

[
max
f∈F

1

n

n∑
t=1

(1− (1− εtf(x(ε1:t−1))))

]

= Eε

[
max
f∈F

1

n

n∑
t=1

εtf(x(ε1:t−1))

]

Since the choice of x was arbitrary, we can take a supremum over all such mappings.

4 Lower Bounds For Supervised Learning in Statistical Setting

Basic idea : To show lower bound, we pick k · n points x1, . . . , xkn and signs ε1, . . . , εkn. The signs
are not revealed to the learner. We use the uniform distribution over the kn pairs of instances as
the distribution D. That is D = Unif{(x1, ε1), . . . , (xkn, εkn). Learner can even know this fact, only
learner does not get to see the εt’s before hand. Now we sample n points from this distribution and
provide this to the learner. Clearly the learner sees at most n labels and so on the the remaining
kn−n points learner has no way to predict anything meaningful. The rest is simply massaging the
math.
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We shall consider the absolute loss `(y′, y) = |y− y′|. However similar analysis can be extended
to other commonly used supervised learning losses (called margin losses) like all `p losses, logistic
loss, hinge loss etc.

Lemma 4. For any class F ⊂ [−1, 1]X and for any k ∈ N, when we consider statistical learning
with absolute loss, if one considers all proper learning algorithms, (where ŷ returned by the algorithm
is within model class F), then we have the following lower bound.

inf
ŷ∈Proper

sup
D

ES
[
LD(ŷ)− inf

f∈F
LD(f)

]
≥ Rkn(F)− 1

k
Rn(F)

Similarly, if one considers all algorithms including improper ones, we get the bound:

inf
ŷ∈All

sup
D

ES
[
LD(ŷ)− inf

f∈F
LD(f)

]
≥ Rkn(F)− 1

k

Proof.

inf
ŷ

sup
D

ES
[
LD(ŷ)− inf

f∈F
LD(f)

]
≥ inf

ŷ
sup

x1,...,xkn

E
ε1,...,εkn

ES∼Unif{(x1,ε1),...,(xkn,εkn)}

[
1

kn

kn∑
t=1

|ŷS(xt)− εt| − inf
f∈F

1

kn

kn∑
t=1

|f(xt)− εt|

]

≥ sup
x1,...,xkn

inf
ŷ

E
ε1,...,εkn

ES∼Unif{(x1,ε1),...,(xkn,εkn)}

[
1

kn

kn∑
t=1

|ŷS(xt)− εt| − inf
f∈F

1

kn

kn∑
t=1

|f(xt)− εt|

]

For any y′ ∈ [−1, 1], |y′ − εt| = 1− y′εt and so,

= sup
x1,...,xkn

inf
ŷ

E
ε1,...,εkn

ES∼Unif{(x1,ε1),...,(xkn,εkn)}

[
1

kn

kn∑
t=1

−εtŷS(xt)− inf
f∈F

1

kn

kn∑
t=1

−εtf(xt)

]

= sup
x1,...,xkn

{
inf
ŷ
ESEε

[
1

kn

kn∑
t=1

−εtŷS(xt)

]
− Eε

[
inf
f∈F

1

kn

kn∑
t=1

−εtf(xt)

]}

= sup
x1,...,xkn

{
Eε

[
sup
f∈F

1

kn

kn∑
t=1

εtf(xt)

]
− sup

ŷ
ESEε

[
1

kn

kn∑
t=1

εtŷS(xt)

]}
Now define J ⊂ [2n] as, JS = {i : (xi, εi) ∈ S}. Notice that for any i ∈ JcS , ,because ŷS is only a
function of sample S, we have ES [Eεi [εiŷS(xi)]] = ES [Eεi [εi] ŷS(xi)] = 0. Hence :

inf
ŷ

sup
D

ES
[
LD(ŷ)− inf

f∈F
LD(f)

]
≥ sup

x1,...,xkn

{
Eε

[
sup
f∈F

1

kn

kn∑
t=1

εtf(xt)

]
− 1

kn
sup
ŷ

ESEε

[∑
t∈J

εtŷS(xt)

]}

≥ sup
x1,...,xkn

Eε

[
sup
f∈F

1

kn

kn∑
t=1

εtf(xt)

]
− 1

kn
sup

x1,...,xkn

sup
ŷ

ESEε

[∑
t∈J

εtŷS(xt)

]

= Rkn(F)− 1

kn
sup

x1,...,xn
sup
ŷ

Eε

[
n∑
t=1

εtŷ(xt)

]
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Now if we consider minimax rates with respect to only proper learning algorithms, that is ŷS ∈ F ,
then

inf
ŷ∈Proper

sup
D

ES
[
LD(ŷ)− inf

f∈F
LD(f)

]
≥ Rkn(F)− 1

kn
sup

x1,...,xn
sup
ŷ

Eε

[
n∑
t=1

εtŷ(xt)

]

≥ Rkn(F)− 1

kn
sup

x1,...,xn
Eε

[
sup
ŷ∈F

n∑
t=1

εtŷ(xt)

]

= Rkn(F)− 1

k
Rn(F)

On the other hand if we consider improper learning algorithms as well, then

inf
ŷ∈All

sup
D

ES
[
LD(ŷ)− inf

f∈F
LD(f)

]
≥ Rkn(F)− 1

kn
sup

x1,...,xn
sup
ŷ

Eε

[
n∑
t=1

εtŷ(xt)

]
≥ Rkn(F)− 1

k
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