
Machine Learning Theory (CS 6783)

Lecture 1 : Learning Frameworks, a Bit of Fun

1 Setting up learning problems

1. X : instance space or input space
Examples:

• Computer Vision: Raw M ×N image vectorized X = [0, 255]M×N , SIFT features (typi-
cally X ⊆ Rd)
• Speech recognition: Mel Cepstral co-efficients X ⊂ R12×length

• Natural Language Processing: Bag-of-words features (X ⊂ Ndocument size), n-grams

2. Y: Outcome space, label space
Examples: Binary classification Y = {±1}, multiclass classification Y = {1, . . . ,K}, regres-
sion Y ⊂ R)

3. ` : Y × Y 7→ R: loss function (measures prediction error)
Examples: Classification `(y′, y) = 11{y′ 6=y}, Support vector machines `(y′, y) = max{0, 1 −
y′ · y}, regression `(y′, y) = (y − y′)2

4. F ⊂ YX : Model/ Hypothesis class (set of functions from input space to outcome space)
Examples:

• Linear classifier: F = {x 7→ sign(f>x) : f ∈ Rd}
• Linear SVM: F = {x 7→ f>x : f ∈ Rd, ‖f‖2 ≤ R}
• Neural Netoworks (deep learning): F = {x 7→ σ(Woutσ(WKσ(. . . σ(W2(W1σ(Winx)))))}

where σ is some non-linear transformation (Eg. ReLU)

Learner observes sample: S = (x1, y1), . . . , (xn, yn)

1.1 Statistical Learning

Generic X , Y, ` and F

Samples generated as (x1, y1), . . . , (xn, yn) ∼ D where D is some unknown distribution over X ×Y.
Goal: Find ŷ that minimizes

E(x,y)∼D [`(ŷ(x), y)]− inf
f∈F

E(x,y)∼D [`(f(x), y)]

1

For any mapping g : X 7→ Y we shall use the notation LD(g) = E(x,y)∼D [`(g(x), y)] and so our goal
is to minimize:

LD(ŷ)− inf
f∈F

LD(f)

Remarks: ŷ is a random quantity as it depends on the sample

1.1.1 PAC framework (Realizability)

Y = {±1}, `(y′, y) = 11{y′ 6=y}

Input instances generated as x1, . . . , xn ∼ DX where DX is some unknown distribution over input
space. The labels are generated as

yt = f∗(xt)

where target function f∗ ∈ F . Learning algorithm only gets sample S and does not know f∗ or DX .

Goal: Find ŷ that minimizes
Px∼DX

(ŷ(x) 6= f∗(x))

1.2 Online Learning Framework

A multi-round game between nature and learner:

For t = 1 to n

Nature produces xt

Learner predicts ŷt

Nature produces label yt

End For

Goal: Minimize regret w.r.t. model class F defined as:

Rn :=
1

n

n∑
t=1

`(ŷt, yt)−min
f∈F

1

n

n∑
t=1

`(f(xt), yt)

2 Prelude: Bit Prediction

2.1 Statistical Learning

We consider as a warmup example, the simplest statistical learning/prediction problem. That of
learning coin flips! Let us consider the case where we don’t receive any input instance (or X = {})
and Y = {±1}. We receive ±1 valued samples y1, . . . , yn ∈ {±1} drawn iid from Bernoullis
distribution with parameter p (ie. Y is +1 with probability p and −1 with probability 1 − p).
Our loss function is the zero-one loss function `(y′, y) = 11{y′ 6=y}. Recall that our goal in sta-
tistical learning is to minimize Lp(ŷ) − inff∈{±1} Lp(f). (Effectively our only choice of F for
this problem is the set of constant mappings, F = {±1}). If we have a sequence of coin flips
y1 = +1, y2 = −1, y3 = +1, y4 = +1, How do we predict the t+ 1’th outcome given the past t

2

outcomes?

If the bits are produces iid by coin flips, then picking majority amongst outcomes so far works
well. Specifically, if we used this choice, it is not hard to show that:

E

[
1

n

n∑
t=1

1{ŷt 6= yt} − min
b∈{±1}

1

n

n∑
t=1

1{yt 6= b}

]
≤ O

(
1√
n

)
and indeed minb∈{±1}

1
n

∑n
t=1 1{yt 6= b} is close to the Bayes error and we can’t really do better

than this. This result is also true with high probability. (Excercise: Try to formally show this.)
But here we made the crucial assumption that bits were drawn iid from a Bernoulli distribution.

What if this were not true? Can we even hope to handle this problem of bit prediction in the online
setting?

2.2 Online Setting: Mind Reading Machine

Most of you guys would have played games like Rock-Paper-Scissors and Matching-Pennies while
growing up. The excitement of these games is in trying to predict the future — the next choice of
the opponent. Of course, if opponent is random, there is no good strategy, and the game becomes
boring. This boring strategy is in fact minimax optimal. However, it is the subtle cues from the
other player and their past behavior that make the game interesting. Does the opponent tend to
play “Rock” after losing with “Scissors”?, do they try to play more heads than tails?, does the
opponent tend to stick with the same choice after winning a round? We try to notice such patterns
in behavior to tip the balance in our favor.

Can we program a computer to beat humans at these games? sThis question was asked by
Claude Shannon and David Hagelbarger in the 1950’s. While at AT&T Bell Labs, they each built a
machine—aptly called “mind reader”—to play the game of Matching-Pennies, According to various
accounts, the machines were able to predict the sequence of heads/tails entered by an untrained
human markedly better than random guess, picking up on a variety of patterns of the past play.

Figure 1: Shannon’s Mind Reading Machine, MIT Museum. (Source: http://william-

poundstone.com/blog/2015/7/30/how-i-beat-the-mind-reading-machine)

In this case how do we make predictions? In this case, can we bound the below quantity referred

3

to as regret? Maybe even by 1/
√
n like the iid case (as long as we are wishing)?

1

n
Regn =

1

n
E

[
n∑
t=1

1{ŷt 6= yt}

]
− min
b∈{±1}

1

n

n∑
t=1

1{yt 6= b}

When the bits are not drawn iid, this problem is far more complicated and interesting. First
off, any deterministic algorithm can be made to incur maximal regret. Specifically, think of the
process where learner deterministically on a round t predicts ŷt ∈ {±1}, then setting yt = −ŷt, we
guarantee that our average loss is 1 while in hindsight, minb∈{±1}

1
n

∑n
t=1 1{yt 6= b} is at worst 1/2.

Hence deterministic algorithms like majority so far have to fail.
In fact, even the randomized algorithm that predicts based on estimated frequency so far qt =

1
2

1
t−1
∑t−1

j=1 yj + 1
2 fails. To see this, say we flip coins and with probability 2/3 we pick +1 and with

probability 1/3 its −1. But now say we sort these bits and present the n/3, bits of −1 first then
the 2n/3 bits of +1 next. In this case, note that the strategy qt = 1

2
1
t−1
∑t−1

j=1 yj + 1
2 (after the very

first round which we can ignore), makes 0 mistakes for the first n/3 rounds when −1 labels are
presented. But from then on, we have a larger expected error on every round. Specifically, we get,

1

n

n∑
t=1

Eŷt∼qt1{yt 6= ŷt} ≥
1

n

n∑
t=n/3+1

Eŷt∼qt1{+1 6= ŷt} =
1

n

n∑
t=n/3+1

(1− qt)

=
1

n

n∑
t=n/3+1

1− 1

2

1

t− 1

t−1∑
j=1

yj −
1

2

=

1

2n

n∑
t=n/3+1

(
1− 1

t− 1

(
t− 1− 2n

3

))
=

1

3

n∑
t=n/3+1

(
1

t− 1

)

Note that in the above,
∑n

t=n/3+1

(
1
t−1

)
is approximately log(3) > 1 or at least is a fixed constant

greater than 1 while minb∈{±1}
1
n

∑n
t=1 1{yt 6= b} = 1/3. Thus we see that for this algorithm, we

can never hope to get regret that diminishes to 0.

So is it at all possible to get average regret to diminish to 0 with n?

Claim 1. There exists a randomized prediction strategy that ensures that

E [Regn] ≤ 1

2n
Eε

[
sup
f∈F

n∑
t=1

ftεt

]

Specifically, this means that if we want to do as well as majority, That is F = {±1} the two
constant predictions of only heads or only tails, then we can easily conclude that just like in the
statistical learning setting for this problem, regret can be bounded by O(1/

√
n)!

To prove the above claim we first prove this following lemma, a result by Thomas Cover (all
the way back in 1965). In fact, the more general question we will answer will be roughly in the
form: For what function φ’s is it possible to ensure that, there exists forecaster s.t.,

for any sequence,

number of mistakes made by forecaster ≤ φ(sequence).

4

The function φ controlling the number of mistakes is a measure of “complexity” or “predictiveness”
of the sequence. It captures our prior belief of what kinds of patterns might appear. For the Penny-
Matching game, φ may be related to the frequency of heads vs tails, or more fine-grained statistics,
such as predictability of the next outcome based on the last three outcomes. In fact, Shannon’s
mind reading machine was based on only 8 such states. Which φ can one choose? How to develop
an efficient algorithm for a given φ?

Lemma 2 (T. Cover’65). Let φ : {±1}n 7→ R be a function such that, for any i, and any
y1, . . . , yi−1, yi+1, . . . , yn,

|φ(y1, . . . , yi−1,+1, yi+1, . . . , yn)− φ(y1, . . . , yi−1,−1, yi+1, . . . , yn)| ≤ 1

n
, (stability condition)

then, there exists a randomized strategy such that for any sequence of bits,

1

n

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}] ≤ φ(y1, . . . , yn)

if and only if,

Eεφ(ε1, . . . , εn) ≥ 1

2

and further, the strategy achieving this bound on expected error is given by:

qt =
1

2
+
n

2
Eεt+1,...,εn [φ(y1, . . . , yt−1,−1, εt+1, . . . , εn)− φ(y1, . . . , yt−1,+1, εt+1, . . . , εn)]

Once we have the above lemma, using φ(y1, . . . , yn) = inff∈F
1
n

∑n
t=1 11{ft 6=yt}+

1
2nEε

[
supf∈F

∑n
t=1 ftεt

]
which satisfies the stability condition, we can conclude the result.

Proof of Lemma.
We start by proving that if there exists an algorithm that guarantees that

1

n

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}] ≤ φ(y1, . . . , yn)

then, Eε [φ(ε1, . . . , εn)] ≥ 1/2.

To see this, note that the regret bound implies that

1

n

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}]− φ(y1, . . . , yn) ≤ 0

for any y1, . . . , yn. Now simply let the adversary pick yt = εt as a Rademacher random variable.
Thus, taking expectation, this implies that,

0 ≥ 1

n

n∑
t=1

Eŷt∼qt [Eεt1{ŷt 6= εt}]− Eεφ(ε1, . . . , εn) =
1

2
− Eεφ(ε1, . . . , εn)

5

Next we prove that if Eεφ(ε1, . . . , εn) ≥ 1
2 , then ∃ strategy s.t. 1

n

∑n
t=1 Eŷt∼qt [1{ŷt 6= yt}] ≤

φ(y1, . . . , yn).

The basic idea is to prove this statement starting from n and moving backwards. Say we have
already played rounds up until round n − 1 and have observed y1, . . . , yn−1. Now let us consider
the last round. On the last round we use,

qn =
1

2
+
n

2
φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1)

Now note that if yn = +1 then Eŷn∼qn
[

11{ŷn 6=yn}
]

= Eŷn∼qn
[

11{ŷn=−1}
]

= 1 − qn and if yn = −1
then Eŷn∼qn

[
11{ŷn 6=yn}

]
= qn and hence for the choice of qn above, we can write

Eŷn∼qn
[

11{ŷn 6=yn}
]

= 1
2n −

yn
2 (φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1))

Plugging in the above, note that for any yn (possibly chosen adversarially looking at qn), we have,

1
nEŷn∼qn

[
11{ŷn 6=yn}

]
− φ(y1, . . . , yn) (1)

=
1

2n
− yn

2
(φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1))− φ(y1, . . . , yn)

=
1

2n
− 1

2
(φ(y1, . . . , yn−1,−1) + φ(y1, . . . , yn−1,+1))

=
1

2n
− Eεnφ(y1, . . . , yn−1, εn) (2)

Now recursively we continue just as above for n − 1 to 0. Let us do the n − 1th step and the
rest follows. To this end, note that just as earlier, if yn−1 = +1 then Eŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
=

1− qn−1 and if yn−1 = −1 then Eŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
= qn−1 and hence,

1
nEŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
= 1

2n −
yn−1

2 (Eεnφ(y1, . . . , yn−2,−1, εn)− Eεnφ(y1, . . . , yn−2,+1, εn))

Thus we can conclude that,

1
nEŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
+ 1

nEŷn∼qn
[

11{ŷn 6=yn}
]
− φ(y1, . . . , yn)

=
1

2n
+ 1

nEŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
− Eεnφ(y1, . . . , yn−1, εn) (From Eq.2)

=
2

2n
− yn−1

2 (Eεnφ(y1, . . . , yn−2,−1, εn)− Eεnφ(y1, . . . , yn−2,+1, εn))− Eεnφ(y1, . . . , yn−1, εn)

=
2

2n
− 1

2
(Eεnφ(y1, . . . , yn−2,+1, εn) + Eεnφ(y1, . . . , yn−2,−1, εn))

=
2

2n
− Eεn−1,εnφ(y1, . . . , yn−2, εn−1, εn)

Proceeding in similar way we conclude that,

1
n

n∑
t=1

Eŷt∼qt
[

11{ŷt 6=yt}
]
− φ(y1, . . . , yn) ≤ n

2n
− Eε1,...,εnφ(ε1, . . . , εn) =

1

2
− Eε1,...,εnφ(ε1, . . . , εn)

Hence, if Eε1,...,εnφ(ε1, . . . , εn) ≥ 1/2 then we can conclude that, 1
n

∑n
t=1 Eŷt∼qt

[
11{ŷt 6=yt}

]
≤ φ(y1, . . . , yn)

as desired.

6

