Machine Learning Theory (CS 6783)

Tu-Th 1:25 to 2:40 PM
Phillips Hall, 407

Instructor : Karthik Sridharan
ABOUT THE COURSE

- No exams!
- 5 assignments that count towards your grades (55%)
- One term project (40%)
- 5% for class participation
Pre-requisites

- Basic probability theory
- Basics of algorithms and analysis
- Introductory level machine learning course

Mathematical maturity, comfortable reading/writing formal mathematical proofs.
Lets get started …
Use *past* observations to *automatically learn* to make better predictions/decisions in the *future*.
WHERE IS IT USED?

Recommendation Systems
WHERE IS IT USED?

Pedestrian Detection
WHERE IS IT USED?

Market Predictions
WHERE IS IT USED?

Spam Classification
WHERE IS IT USED?

- Online advertising (improving click through rates)
- Climate/weather prediction
- Text categorization
- Unsupervised clustering (of articles ...)
- ...
Cognitive theories look beyond behavior to explain brain-based learning. And constructivism views learning as a process in which the learner actively constructs or builds new ideas or concepts. Behaviorism. Behaviorism as a theory was primarily developed by B. F. Skinner.

Learning theory (education) - Princeton University
www.princeton.edu/.../Learning_theory_(education)... Princeton University
What is Machine Learning Theory

- How do we formalize machine learning problems
- Right framework for right problems (Eg. online, statistical)
- How do we pick the right model to use and what are the tradeoffs between various models
- How many instances do we need to see to learn to given accuracy
- How do we design learning algorithms with provable guarantees on performance
- Computational learning theory: which problems are efficiently learnable
Outline of Topics

- Learning problem and frameworks, settings, minimax rates
- Statistical learning theory
 - Probably Approximately Correct (PAC) and Agnostic PAC frameworks
 - Empirical Risk Minimization, Uniform convergence, Empirical process theory
 - Bound on learning rates: MDL bounds, PAC Bayes theorem, Rademacher complexity, VC dimension, covering numbers, fat-shattering dimension
 - Supervised learning: necessary and sufficient conditions for learnability
- Online learning theory
 - Sequential minimax and value of online learning game
 - Regret bounds: Sequential Rademacher complexity, Littlestone dimension, sequential covering numbers, sequential fat-shattering dimension
 - Online supervised learning: necessary & sufficient conditions for learnability
- Algorithms for online convex optimization: Exponential weights algorithm, strong convexity, exp-concavity and rates, Online mirror descent
- Deriving generic learning algorithms: relaxations, random play-outs
- If time permits, uses of learning theory results in optimization, approximation algorithms, perhaps a bit of bandits, …
Learning Problem: Basic Notation

- **Input space/feature space**: \(\mathcal{X} \)
 (Eg. bag-of-words, n-grams, vector of grey-scale values, user-movie pair to rate)
 Feature extraction is an art, … an art we won’t cover in this course

- **Output space/label space**: \(\mathcal{Y} \)
 (Eg. \(\{\pm 1\} \), \([K]\), \(\mathbb{R}\)-valued output, structured output)

- **Loss function**: \(\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R} \)
 (Eg. 0−1 loss \(\ell(y', y) = 1 \{y' \neq y\} \), sq-loss \(\ell(y', y) = (y - y')^2 \), absolute loss \(\ell(y', y) = |y - y'| \))
 Measures performance/cost per instance (inaccuracy of prediction/ cost of decision).

- **Model class/Hypothesis class** \(\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}} \)
 (Eg. \(\mathcal{F} = \{x \mapsto f^T x : \|f\|_2 \leq 1\} \), \(\mathcal{F} = \{x \mapsto \text{sign}(f^T x)\} \))
How is data generated?

How do we measure performance or success?

Where do we place our prior assumption or model assumptions?
FORMALIZING LEARNING PROBLEMS

- How is data generated?
- How do we measure performance or success?
- Where do we place our prior assumption or model assumptions?
- What we observe?
\[\mathcal{Y} = \{\pm 1\}, \quad \ell(y', y) = 1 \{y' \neq y\}, \quad \mathcal{F} \subset \mathcal{Y}^X \]

- Learner only observes training sample \(S = \{(x_1, y_1), \ldots, (x_n, y_n)\} \)
 - \(x_1, \ldots, x_n \sim D_X \)
 - \(\forall t \in [n], y_t = f^*(x_t) \) where \(f^* \in \mathcal{F} \)
- Goal: find \(\hat{y} \in \mathcal{Y}^X \) to minimize

\[\mathbb{P}_{x \sim D_X} (\hat{y}(x) \neq f^*(x)) \]

(Either in expectation or with high probability)
Definition

Given $\delta > 0$, $\epsilon > 0$, sample complexity $n(\epsilon, \delta)$ is the smallest n such that we can always find forecaster \hat{y} s.t. with probability at least $1 - \delta$,

$$\mathbb{P}_{x \sim D_X} (\hat{y}(x) \neq f^*(x)) \leq \epsilon$$

(efficiently PAC learnable if we can learn efficiently in $1/\delta$ and $1/\epsilon$)

Eg. : learning output for deterministic systems
NonNull-Parametric Regression

\[\mathcal{Y} \subset \mathbb{R}, \quad \ell(y', y) = (y - y')^2, \quad \mathcal{F} \subset \mathcal{Y}^X \]

- Learner only observes training sample \(S = \{(x_1, y_1), \ldots, (x_n, y_n)\} \)
 - \(x_1, \ldots, x_n \sim D_X \)
 - \(\forall t \in [n], y_t = f^*(x_t) + \varepsilon_t \) where \(f^* \in \mathcal{F} \) and \(\varepsilon_t \sim N(0, \sigma) \)

- Goal: find \(\hat{y} \in \mathbb{R}^X \) to minimize

\[
\|\hat{y} - f^*\|_{L_2(D_X)}^2 = \mathbb{E}_{x \sim D_X} [(\hat{y}(x) - f^*(x))^2]
\]

(Either in expectation or in high probability)

Eg. : clinical trials (inference problems) model class known.
Non-parametric Regression

\[\mathcal{Y} \subset \mathbb{R}, \quad \ell(\hat{y}, y) = (y - \hat{y})^2, \quad \mathcal{F} \subset \mathcal{Y}^\mathcal{X} \]

- Learner only observes training sample \(S = \{(x_1, y_1), \ldots, (x_n, y_n)\} \)
 - \(x_1, \ldots, x_n \sim D_X \)
 - \(\forall t \in [n], y_t = f^*(x_t) + \varepsilon_t \) where \(f^* \in \mathcal{F} \) and \(\varepsilon_t \sim N(0, \sigma) \)

- Goal: find \(\hat{y} \in \mathbb{R}^\mathcal{X} \) to minimize

\[
\|\hat{y} - f^*\|_{L_2(D_X)}^2 = \mathbb{E}_{x \sim D_X} [(\hat{y}(x) - f^*(x))^2] \\
= \mathbb{E}_{x \sim D_X} [(\hat{y}(x) - y)^2] - \inf_{f \in \mathcal{F}} \mathbb{E}_{x \sim D_X} [(f(x) - y)^2]
\]

(Either in expectation or in high probability)

Eg. : clinical trials (inference problems) model class known.
Learner only observes training sample $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ drawn iid from joint distribution D on $\mathcal{X} \times \mathcal{Y}$

Goal: find $\hat{y} \in \mathbb{R}^\mathcal{X}$ to minimize expected loss over future instances

$$\mathbb{E}_{(x,y) \sim D}[\ell(\hat{y}(x), y)] - \inf_{f \in \mathcal{F}} \mathbb{E}_{(x,y) \sim D}[\ell(f(x), y)] \leq \epsilon$$

$$L_D(\hat{y}) - \inf_{f \in \mathcal{F}} L_D(f) \leq \epsilon$$

Well suited for Prediction problems.
Definition

Given $\delta > 0$, $\epsilon > 0$, sample complexity $n(\epsilon, \delta)$ is the smallest n such that we can always find forecaster \hat{y} s.t. with probability at least $1 - \delta$,

$$\mathcal{L}_D(\hat{y}) - \inf_{f \in \mathcal{F}} \mathcal{L}_D(f) \leq \epsilon$$
Learning Problems

Pedestrian Detection

Spam Classification
Learning Problems

Pedestrian Detection (Batch/Statistical setting)

Spam Classification (Online/adversarial setting)
For $t = 1$ to n

Learner receives $x_t \in \mathcal{X}$
Learner predicts output $\hat{y}_t \in \mathcal{Y}$
True output $y_t \in \mathcal{Y}$ is revealed

End for

Goal: minimize regret

$$\text{Reg}_n(\mathcal{F}) := \frac{1}{n} \sum_{t=1}^{n} \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t)$$
Other Problems/Frameworks

- Unsupervised learning, clustering
- Semi-supervised learning
- Active learning and selective sampling
- Online convex optimization
- Bandit problems, partial monitoring, …
No Free Lunch Theorems

Minimax rates for various setting/problems

Comparing the various settings