1 Recap

PAC framework:

\[V_{n}^{PAC}(F) := \inf \sup E_{S:|S|=n} [P_{x \sim D_{n}} (\hat{y}(x) \neq f^{*}(x))] \]

A problem is “PAC learnable” if \(V_{n}^{PAC} \to 0 \). That is, there exists a learning algorithm that converges to 0 expected error as sample size increases.

Non-parametric Regression:

\[V_{n}^{NR}(F) := \inf \sup E_{S:|S|=n} [E_{x \sim D_{X}} [(\hat{y}(x) - f^{*}(x))^2]] \]

A statistical estimation problem is consistent if \(V_{n}^{NR} \to 0 \).

Statistical learning:

\[V_{n}^{stat}(F) := \inf \sup E_{S:|S|=n} [L_{D}(\hat{y}) - \inf_{f \in F} L_{D}(f)] \]

A problem is “statistically learnable” if \(V_{n}^{stat} \to 0 \).

Statistical learning:

\[V_{n}^{stat}(F) := \inf \sup E_{S:|S|=n} [L_{D}(\hat{y}) - \inf_{f \in F} L_{D}(f)] \]

A problem is “statistically learnable” if \(V_{n}^{stat} \to 0 \).

Proposition 1. For any class \(F \subset \{\pm 1\}^{X} \),

\[4V_{n}^{PAC}(F) \leq V_{n}^{NR}(F) \leq V_{n}^{stat}(F) \]

and for any \(F \subset \mathbb{R}^{X} \),

\[V_{n}^{NR}(F) \leq V_{n}^{stat}(F) \]

2 No Free Lunch Theorem

The more expressive the class \(F \) is, the larger is \(V_{n}^{PAC}(F), V_{n}^{NR}(F) \) and \(V_{n}^{stat}(F) \). The no free lunch theorem says that if \(F = \mathcal{Y}^{X} \) the set of all function, then there is not convergence of minimax rates.
Proposition 2. If $|\mathcal{X}| \geq 2n$ then,
\[\mathcal{V}_{n}^{PAC}(\mathcal{Y}^{X}) \geq \frac{1}{4} \]

Proof. Consider D_{X} to be the uniform distribution over $2n$ points. Also let $f^{*} \in \mathcal{Y}^{X}$ be a random choice of the possible 2^{2n} function on these points. Now if we obtain sample S of size at most n, then
\[\mathcal{V}_{n}^{PAC}(\mathcal{Y}^{X}) = \inf_{\hat{y}} \sup_{D_{X},f^{*} \in \mathcal{F}} \mathbb{E}_{S|S| = n} [\mathbb{P}_{x \sim D_{x}}(\hat{y}(x) \neq f^{*}(x))] \]
\[\geq \inf_{\hat{y}} \mathbb{E}_{f^{*}} \left[\mathbb{E}_{S|S| = n} [\mathbb{P}_{x \sim D_{x}}(\hat{y}(x) \neq f^{*}(x))] \right] = \inf_{\hat{y}} \mathbb{E}_{f^{*}} \left[\mathbb{E}_{S|S| = n} \left[\frac{1}{2n} \sum_{j=1}^{2n} 1(\hat{y}(x_{j}) \neq f^{*}(x_{j})) \right] \right] \]
\[\geq \frac{1}{2n} \inf_{\hat{y}} \mathbb{E}_{f^{*}} \left[\mathbb{E}_{i_{1},\ldots,i_{n} \sim \text{Unif}[2n]} \left[\sum_{j \notin \{i_{1},\ldots,i_{n}\}} 1(\hat{y}(x_{j}) \neq f^{*}(x_{j})) \right] \right] \]
\[= \frac{1}{2n} \inf_{\hat{y}} \mathbb{E}_{i_{1},\ldots,i_{n} \sim \text{Unif}[2n]} \left[\mathbb{E}_{f^{*}} \left[\sum_{j \notin \{i_{1},\ldots,i_{n}\}} 1(\hat{y}(x_{j}) \neq f^{*}(x_{j})) \right] \right] \]
But outside of sample S, on each x, $f^{*}(x)$ can be ± 1 with equal probability. Hence,
\[\mathcal{V}_{n}^{PAC}(\mathcal{Y}^{X}) \geq \frac{1}{2n} \inf_{\hat{y}} \mathbb{E}_{i_{1},\ldots,i_{n} \sim \text{Unif}[2n]} \left[\mathbb{E}_{f^{*}} \left[\sum_{j \notin \{i_{1},\ldots,i_{n}\}} 1(\hat{y}(x_{j}) \neq f^{*}(x_{j})) \right] \right] \geq \frac{1}{2n} \frac{n}{2} = \frac{1}{4} \]

This shows that we need some restriction on \mathcal{F} even for the realizable PAC setting. We cannot learn arbitrary set of hypothesis, there is no free lunch.

This tells us that we need to restrict the set of models \mathcal{F} we consider,

3 Empirical Risk Minimization and The Empirical Process

One algorithm/principle/ learning rule that is natural for statistical learning problems is the Empirical Risk Minimizer (ERM) algorithm. That is pick the hypothesis from model class \mathcal{F} that best fits the sample, or in other words,
\[\hat{y}_{\text{erm}} = \arg\min_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell(f(x_{t}), y_{t}) \]

Claim 3. For any \mathcal{Y}, \mathcal{X}, \mathcal{F} and loss function $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ (subject to mild regularity conditions required for measurability), we have that
\[\mathcal{V}_{n}^{\text{stat}}(\mathcal{F}) \leq \sup_{D} \mathbb{E}_{S} \left[L_{D}(\hat{y}_{\text{erm}}) - \inf_{f \in \mathcal{F}} L_{D}(f) \right] \]
\[\leq \sup_{D} \mathbb{E}_{S} \left[\sup_{f \in \mathcal{F}} \mathbb{E} \left[\ell(f(x), y) \right] - \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_{t}), y_{t}) \right] \]
Proof. Note that

\[
\mathbb{E}_S [L_D(\hat{y}_{\text{erm}})] - \inf_{f \in \mathcal{F}} L_D(f)
\]

\[
= \mathbb{E}_S [L_D(\hat{y}_{\text{erm}})] - \inf_{f \in \mathcal{F}} \mathbb{E}_S \left[\frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right]
\]

\[
\leq \mathbb{E}_S \left[L_D(\hat{y}_{\text{erm}}) - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right]
\]

\[
\leq \mathbb{E}_S \left[L_D(\hat{y}_{\text{erm}}) - \frac{1}{n} \sum_{t=1}^{n} \ell(\hat{y}_{\text{erm}}(x_t), y_t) \right]
\]

since \(\hat{y}_{\text{erm}} \in \mathcal{F} \), we can pass to upper bound by replacing with supremum over all \(f \in \mathcal{F} \) as

\[
\leq \mathbb{E}_S \sup_{f \in \mathcal{F}} \left[\mathbb{E} [\ell(f(x), y)] - \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right]
\]

\[
\leq \mathbb{E}_S \left[\sup_{f \in \mathcal{F}} \left| \mathbb{E} [\ell(f(x), y)] - \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right| \right]
\]

This completes the proof. \(\square \)

- The question of whether minimax value converges to 0, or equivalently whether the problem is learnable can now be understood by studying if, uniformly over class \(\mathcal{F} \) does average converge to expected loss?

- For bounded losses, for any fixed \(f \in \mathcal{F} \), the difference of average loss and expected loss for a given \(f \in \mathcal{F} \) goes to 0 by Hoeffding bound.

- The difference of average loss and expected loss is an empirical process indexed by class \(\mathcal{F} \). We study supremum (over \(\mathcal{F} \)) of these empirical processes. This is the main question of interest in empirical process theory.

3.1 Example: Finite Class

For now and for most of this course we shall assume that the loss \(\ell \) is bounded by 1, that is \(\sup_{y,y' \in Y} |\ell(y', y)| \leq 1 \).

Claim 4. Consider the case when the hypothesis \(\mathcal{F} \) has finite cardinality, that is \(|\mathcal{F}| < \infty \). For any loss \(\ell \) bounded by 1, we have that

\[
\mathcal{V}_n^{\text{stat}}(\mathcal{F}) \leq \sup_D \mathbb{E}_S \left[L_D(\hat{y}_{\text{erm}}) - \inf_{f \in \mathcal{F}} L_D(f) \right] \leq 8 \sqrt{\frac{\log n |\mathcal{F}|}{n}}
\]

Proof. By Claim 3 we have that

\[
\mathcal{V}_n^{\text{stat}}(\mathcal{F}) \leq \sup_D \mathbb{E}_S \left[L_D(\hat{y}_{\text{erm}}) - \inf_{f \in \mathcal{F}} L_D(f) \right]
\]

\[
\leq \mathbb{E}_S \left[\max_{f \in \mathcal{F}} \left| \mathbb{E} [\ell(f(x), y)] - \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right| \right]
\]
Now let us define for every $f \in \mathcal{F}$, the random variable Z^f as $\ell(f(x), y)$ where $(x, y) \sim D$. Note that $\mathbb{E}[Z^f] = \mathbb{E}[\ell(f(x), y)]$ and Z_1^f, \ldots, Z_n^f are n iid copies of Z^f. Hence by Hoeffding’s inequality we have that:

$$P_S\left(\left|\mathbb{E}[Z^f] - \frac{1}{n} \sum_{t=1}^{n} Z_t^f\right| > \epsilon\right) \leq 2 \exp\left(-\frac{n\epsilon^2}{2}\right)$$

Hence by union bound we have that

$$P_S\left(\max_{f \in \mathcal{F}} \left|\mathbb{E}[Z^f] - \frac{1}{n} \sum_{t=1}^{n} Z_t^f\right| > \epsilon\right) \leq 2|\mathcal{F}| \exp\left(-\frac{n\epsilon^2}{2}\right)$$

Hence,

$$\mathbb{E}\left[\max_{f \in \mathcal{F}} \left|\mathbb{E}[Z^f] - \frac{1}{n} \sum_{t=1}^{n} Z_t^f\right|\right] \leq \epsilon P\left(\max_{f \in \mathcal{F}} \left|\mathbb{E}[Z^f] - \frac{1}{n} \sum_{t=1}^{n} Z_t^f\right| \leq \epsilon\right) + 2P\left(\max_{f \in \mathcal{F}} \left|\mathbb{E}[Z^f] - \frac{1}{n} \sum_{t=1}^{n} Z_t^f\right| > \epsilon\right)$$

$$\leq \epsilon + 4|\mathcal{F}| \exp\left(-\frac{n\epsilon^2}{2}\right)$$

Choosing $\epsilon = \sqrt{\log(n|\mathcal{F}|^2)/n}$ we get,

$$\mathbb{E}\left[\max_{f \in \mathcal{F}} \left|\mathbb{E}[Z^f] - \frac{1}{n} \sum_{t=1}^{n} Z_t^f\right|\right] \leq 8\sqrt{\frac{\log n|\mathcal{F}|}{n}}$$

Hence for a finite class \mathcal{F}, using the ERM algorithm, one can achieve a rate of $O\left(\sqrt{\frac{\log n|\mathcal{F}|}{n}}\right)$ (in fact the $\sqrt{\log n}$ factor can be shaved off with more careful analysis).

What about infinite class \mathcal{F}?