Machine Learning theory (CS 6783)

Problem set 0

This assignment is not counted towards your grade and you don’t need to submit it. It’s meant to brush up some basics and get your hands wet.

Some facts/results you will need for this assignment:

1. **Markov Inequality**: For any non-negative integrable random variable X, and any $\epsilon > 0$,
 $$ P(X \geq \epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon} $$

2. **Hoeffding inequality**: Let X_1, \ldots, X_n be n independent identically distributed (iid) random variables such that each $X_i \in [a, b]$ and let μ be the expected value of these random variables. Then,
 $$ P \left(\left| \frac{1}{n} \sum_{t=1}^{n} X_t - \mu \right| \geq \epsilon \right) \leq 2 \exp \left(- \frac{2n\epsilon^2}{(b-a)^2} \right) $$

3. **Bernstein inequality**: Let X_1, \ldots, X_n be n independent identically distributed (iid) random variables such that each $X_i \in [a, b]$ and let μ be the expected value of these random variables and let σ^2 be their variance. Then,
 $$ P \left(\left| \frac{1}{n} \sum_{t=1}^{n} X_t - \mu \right| \geq \epsilon \right) \leq 2 \exp \left(- \frac{n\epsilon^2}{2\sigma^2 + (b-a)\epsilon/3} \right) $$

4. **Hoeffding-Azuma inequality**: Let $(X_t)_{t \geq 0}$ be a martingale and for any $t \geq 2$, $|X_t - X_{t-1}| \leq c$ then, for any n,
 $$ P \left(|X_N - X_0| \geq \epsilon \right) \leq 2 \exp \left(- \frac{\epsilon^2}{2nc} \right) $$
Q1 Let X_1, \ldots, X_n be n independent identically distributed (iid) random variables that are possibly unbounded having expected value μ. Also assume that for any $i \in [n]$, $|X_i| \leq c$. Use Markov inequality to provide a bound of form

$$P \left(\left| \frac{1}{n} \sum_{t=1}^{n} X_t - \mu \right| \geq \epsilon \right) \leq F(n, c, \epsilon)$$

What is the form of $F(n, c, \epsilon)$.

Hint :

(a) Write μ as $E\left[\frac{1}{n} \sum_{t=1}^{n} X'_t \right]$ where X'_1, \ldots, X'_n are drawn iid from same distribution.

(b) Notice that $X_t - X'_t$ has same distribution as $\varepsilon_t(X_t - X'_t)$ where each ε_t is a Rademacher random variable (ie. $\{\pm 1\}$ valued random variable which is either $+1$ or -1 with equal probability)

(c) Use the fact that $E\left[\left| \frac{1}{n} \sum_{t=1}^{n} \varepsilon_t \right| \right] \leq \sqrt{\frac{2}{n}}$

Q2 Markov Vs Hoeffding Vs Bernstein

Let D be some distribution over the interval $[a, b]$ such that expectation of random variables X’s drawn from D is μ and variance is σ^2. We want the following statement to hold:

*For any $\delta > 0$ and $\epsilon > 0$, as long as $n > n(\epsilon, \delta)$, if X_1, \ldots, X_n are drawn iid from D, with probability at least $1 - \delta$,

$$\left| \frac{1}{n} \sum_{t=1}^{n} X_t - \mu \right| \leq \epsilon$$

What is $n(\epsilon, \delta)$ implied by

(a) Markov bound (more specifically bound from Q1)

(b) Hoeffding inequality

(c) Bernstein inequality

Which of the three is better when

(a) σ^2 is much smaller compared to $(a - b)^2$ and δ is large (say $1/2$)

(b) σ^2 is much smaller compared to $(a - b)^2$ and δ is small

(c) σ^2 is large and δ is small

Basically get a feel for when each of these bounds are useful.

Q3 In this question we will learn to derive what is called Bounded difference inequality or McDiarmid’s inequality using Hoeffding-Azuma inequality. The bounded difference inequality states that:
Theorem 1. Consider independent X valued random variables X_1, \ldots, X_n. Let $F : X^n \to \mathbb{R}$ be any function such that for any $x_1, \ldots, x_n, x'_1, \ldots, x'_n$ and any $i \in [n]$,

$$|F(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) - F(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n)| \leq c$$

(the above is called the bounded difference property). Then we have that

$$P \left(|F(X_1, \ldots, X_n) - E[F]| \geq \epsilon \right) \leq 2 \exp \left(-\frac{\epsilon^2}{2nc^2} \right)$$

Prove the above theorem using Hoeffding Azuma bound.

Hint:

(a) Define the right martingale sequence using conditional expectations of the function
(b) Use the bounded difference inequality to show that the premise of the Hoeffding-Azuma bound holds.