1 Recap

- We showed $\mathcal{V}_n^\text{seq}(\mathcal{F}) \leq 2\mathcal{R}_n^\text{seq}(\ell \circ \mathcal{F})$, We defined notions of sequential covering number and sequential fat-shattering dimension. In fact these complexity measures closely bound Seq. Rademacher complexity.

- We also showed that for common supervised learning losses,

$$\mathcal{V}_n^\text{seq}(\mathcal{F}) \geq \frac{1}{2} \mathcal{R}_n^\text{seq}(\mathcal{F})$$

- Minimax rate can be recursively defined using conditional Value:

$$\mathcal{V}_n(x_1:t, y_1:t) = \left(\sup_{x_i \in X} \inf_{q_i \in \Delta(Y)} \mathbb{E}_{\hat{y}_t \sim q_t} \left[\sum_{i=t+1}^{n} \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right] \right)^n$$

Minimax Strategy:

$$q_t(x_t) = \arg\min_{q_t \in \Delta(Y)} \sup_{y_t \in Y} \mathbb{E}_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t) + \mathcal{V}_n(x_1:t, y_1:t)]$$

Pros:

1. We can apply minimax swap and go to the dual game from $t + 1$ onwards to n, in definition of $\mathcal{V}_n(x_1:t, y_1:t)$

2. If $\mathcal{V}_n(x_1:t, y_1:t)$ can be written down in a succinct form or better yet is computationally tractable, then there is hope to obtain minimax algorithm

Cons:

1. Except for very special problems (Eg. bit prediction example from lecture 12 for instance), $\mathcal{V}_n(x_1:t, y_1:t)$ does not have a succinct form

2. We don’t know the exact minimax algorithm even for experts type problem.

• Can we use all the theory developed so far to provide a schema for designing learning algorithms for a general problem at hand?
2 Relaxations

Basic idea: Replace \(V_n(x_{1:t}, y_{1:t}) \) by a relaxation \(\text{Rel}_n(x_{1:t}, y_{1:t}) \).

Let us define relaxation \(\text{Rel}_n \) as any mapping \(\text{Rel}_n: \bigcup_{t=0}^{n} \mathcal{X}^t \times \mathcal{Y}^t \to \mathbb{R} \). Further, we say that a relaxation is admissible if it satisfies the following two conditions.

Initial condition:

\[- \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell(f(x_t), y_t) \leq \text{Rel}_n(x_{1:n}, y_{1:n})\]

Admissibility condition: For any \(x_1, \ldots, x_t \in \mathcal{X} \) and any \(y_1, \ldots, y_{t-1} \in \mathcal{Y} \),

\[
\inf_{q_t \in \Delta(\mathcal{Y})} \sup_{y_t \in \mathcal{Y}} \left\{ E_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t)] + \text{Rel}_n(x_{1:t}, y_{1:t}) \right\} \leq \text{Rel}_n(x_{1:t-1}, y_{1:t-1})
\]

Proposition 1. If \(\text{Rel}_n \) is any admissible relaxation, then if we use the learning algorithm that at time \(t \), given \(x_t \) produces \(q_t(x_t) = \arg\min_{q_t} \sup_{y_t \in \mathcal{Y}} \{ E_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t)] + \text{Rel}_n(x_{1:t}, y_{1:t}) \} \), then,

\[
\frac{1}{n} \sum_{t=1}^{n} \mathbb{E}_{\hat{y}_t \sim q_t(x_t)} [\ell(\hat{y}_t, y_t)] - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \leq \frac{1}{n} \text{Rel}_n(\cdot)
\]

and if the loss is bounded then by application of Hoeffding-Azuma inequality, for any \(\delta > 0 \) with probability at least \(1 - \delta \) over our randomization,

\[
\frac{1}{n} \sum_{t=1}^{n} \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \leq \frac{1}{n} \text{Rel}_n(\cdot) + O \left(\sqrt{\frac{\log 1/\delta}{n}} \right)
\]

Proof. Assume \(\text{Rel}_n \) is any admissible relaxation. Also let \(q_t \)'s be obtained by as described above.

Then, by initial condition,

\[
\sum_{t=1}^{n} \mathbb{E}_{\hat{y}_t \sim q_t(x_t)} [\ell(\hat{y}_t, y_t)] - \inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell(f(x_t), y_t) \leq \sum_{t=1}^{n} \mathbb{E}_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t)] + \text{Rel}_n(x_{1:n}, y_{1:n})
\]

\[
\leq \sum_{t=1}^{n-1} \mathbb{E}_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t)] \sup_{y_t \in \mathcal{Y}} \left\{ \mathbb{E}_{\hat{y}_n \sim q_n(x_n)} [\ell(\hat{y}_n, y_n)] + \text{Rel}_n(x_{1:n}, y_{1:n}) \right\}
\]

\[
= \sum_{t=1}^{n-1} \mathbb{E}_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t)] \inf_{q_n \in \Delta(\mathcal{Y})} \sup_{y_t \in \mathcal{Y}} \left\{ \mathbb{E}_{\hat{y}_n \sim q} [\ell(\hat{y}_n, y_n)] + \text{Rel}_n(x_{1:n}, y_{1:n}) \right\}
\]

by admissibility condition,

\[
\leq \sum_{t=1}^{n-1} \mathbb{E}_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t)] + \text{Rel}_n(x_{1:n-1}, y_{1:n-1})
\]

\[
\leq \ldots \leq \text{Rel}_n(\cdot)
\]
As for the high probability version, note that loss is bounded by some B, then by Hoeffding-Azuma bound on average of martingale difference sequences,

$$P \left(\left| \frac{1}{n} \sum_{t=1}^{n} \left(\mathbb{E}_{\hat{y}_t \sim q_t(x_t)} [\ell(\hat{y}_t, y_t)] - \ell(\hat{y}_t, y_t) \right) \right| > \epsilon \right) \leq 2 \exp \left(-n\epsilon^2 / 2B \right)$$

Remark 2.1. V_n is an admissible relaxation and corresponding relaxation based algorithms are the minimax algorithms.

Outline

1. From theory developed so far, arrive at relaxations
2. Each admissible relaxation comes with an algorithm
3. In fact we don’t need to exactly solve for q_t as defined above, all proofs go through even if we are able to pick q_t such that,

$$\sup_{\hat{y}_t \in Y} \mathbb{E}_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t) + \text{Rel}_n(x_{1:t}, y_{1:t})] \leq \text{Rel}_n(x_{1:t-1}, y_{1:t-1})$$

3 Sequential Rademacher Relaxation

Definition 1. Define the sequential Rademacher relaxation as

$$\text{Rad}_n(x_{1:t}, y_{1:t}) := \sup_{x,y} \mathbb{E}_{\epsilon_{t+1}, \ldots, \epsilon_n} \sup_{f \in \mathcal{F}} \left[2 \sum_{s=t+1}^{n} \epsilon_s \ell(f(x_{s-t}(\epsilon_{s+1}; s-1)), y_{s-t}(\epsilon_{t+1}; s-1)) - \sum_{s=1}^{t} \ell(f(x_s), y_s) \right]$$

where x above is supremum over \mathcal{X} valued tree of depth $n - t$ and similarly y is a \mathcal{Y}-valued tree of depth $n - t$.

Claim 2. Rad_n is an admissible relaxation. Further using the q_t corresponding to this relaxation one get that

$$\mathbb{E} [\text{Reg}_n] \leq 2\text{Reg}_n^\text{sq}(\ell \circ \mathcal{F})$$

Proof. As for initial condition note that,

$$\text{Rad}_n(x_{1:n}, y_{1:n}) = \sup_{f \in \mathcal{F}} \left[-\sum_{s=1}^{n} \ell(f(x_s), y_s) \right] = -\inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell(f(x_t), y_t)$$

Now to check admissibility, note that

$$\inf_{q_t \in \Delta(\mathcal{Y})} \sup_{y_t \in \mathcal{Y}} \{ \mathbb{E}_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t)] + \text{Rad}_n(x_{1:t}, y_{1:t}) \} = \sup_{p_t \in \Delta(\mathcal{Y})} \inf_{\hat{y}_t \in \mathcal{Y}} \mathbb{E}_{\hat{y}_t \sim p_t} [\ell(\hat{y}_t, y_t) + \text{Rad}_n(x_{1:t}, y_{1:t})]$$

$$= \sup_{p_t \in \Delta(\mathcal{Y})} \left\{ \inf_{\hat{y}_t \in \mathcal{Y}} \mathbb{E}_{\hat{y}_t \sim p_t} [\ell(\hat{y}_t, y_t)] + \mathbb{E}_{y_t \sim p_t} [\text{Rad}_n(x_{1:t}, y_{1:t})] \right\}$$
\[
\begin{align*}
&= \sup_{p_t \in \Delta(Y)} \left\{ \inf_{\tilde{y}_t \in Y} \mathbb{E}_{\tilde{y}_t \sim p_t} [\ell(\tilde{y}_t, y_t)] \
+ \mathbb{E}_{y_t \sim p_t} \left[\sup_{x, y} \mathbb{E}_{\epsilon_{t+1}, \ldots, \epsilon_n} \sup_{f \in \mathcal{F}} \left[2 \sum_{s=t+1}^{n} \epsilon_s \ell(f(x_{s-t}(\epsilon_{t+1:s-1})), y_{s-t}(\epsilon_{t+1:s-1})) - \sum_{s=1}^{t} \ell(f(x_s), y_s) \right] \right] \right\} \\
&= \sup_{p_t \in \Delta(Y)} \left\{ \mathbb{E}_{y_t \sim p_t} \sup_{x, y} \mathbb{E}_{\epsilon_{t+1}, \ldots, \epsilon_n} \sup_{f \in \mathcal{F}} \left[\inf_{\tilde{y}_t \in Y} \mathbb{E}_{\tilde{y}_t \sim p_t} [\ell(\tilde{y}_t, y_t)] \
+ 2 \sum_{s=t+1}^{n} \epsilon_s \ell(f(x_{s-t}(\epsilon_{t+1:s-1})), y_{s-t}(\epsilon_{t+1:s-1})) - \sum_{s=1}^{t} \ell(f(x_s), y_s) \right] \right\} \\
&\leq \sup_{p_t \in \Delta(Y)} \left\{ \mathbb{E}_{y_t, y_t' \sim p_t} \sup_{x, y} \mathbb{E}_{\epsilon_{t+1}, \ldots, \epsilon_n} \sup_{f \in \mathcal{F}} \left[\mathbb{E}_{\tilde{y}_t \sim p_t} [\ell(f(x_t), y_t')] \
+ 2 \sum_{s=t+1}^{n} \epsilon_s \ell(f(x_{s-t}(\epsilon_{t+1:s-1})), y_{s-t}(\epsilon_{t+1:s-1})) - \sum_{s=1}^{t} \ell(f(x_s), y_s) \right] \right\} \\
&= \sup_{p_t \in \Delta(Y)} \left\{ \mathbb{E}_{y_t, y_t' \sim p_t} \sup_{x, y} \mathbb{E}_{\epsilon_{t+1}, \ldots, \epsilon_n} \sup_{f \in \mathcal{F}} \left[\mathbb{E}_{\tilde{y}_t \sim p_t} [\ell(f(x_t), y_t')] \
+ 2 \sum_{s=t+1}^{n} \epsilon_s \ell(f(x_{s-t}(\epsilon_{t+1:s-1})), y_{s-t}(\epsilon_{t+1:s-1})) - \sum_{s=1}^{t} \ell(f(x_s), y_s) \right] \right\} \\
&\leq \sup_{y_t, y_t' \in Y} \mathbb{E}_{\epsilon_t} \sup_{x, y} \mathbb{E}_{\epsilon_{t+1}, \ldots, \epsilon_n} \sup_{f \in \mathcal{F}} \left\{ \mathbb{E}_{\tilde{y}_t \sim p_t} [\ell(f(x_t), y_t')] \
+ 2 \sum_{s=t+1}^{n} \epsilon_s \ell(f(x_{s-t}(\epsilon_{t+1:s-1})), y_{s-t}(\epsilon_{t+1:s-1})) - \sum_{s=1}^{t} \ell(f(x_s), y_s) \right\} \\
&\leq \sup_{y_t \in Y} \mathbb{E}_{\epsilon_t} \sup_{x, y} \mathbb{E}_{\epsilon_{t+1}, \ldots, \epsilon_n} \sup_{f \in \mathcal{F}} \left\{ \mathbb{E}_{\tilde{y}_t \sim p_t} [\ell(f(x_t), y_t')] \
+ 2 \sum_{s=t+1}^{n} \epsilon_s \ell(f(x_{s-t}(\epsilon_{t+1:s-1})), y_{s-t}(\epsilon_{t+1:s-1})) - \sum_{s=1}^{t} \ell(f(x_s), y_s) \right\} \\
&+ \sup_{y_t \in Y} \mathbb{E}_{\epsilon_t} \sup_{x, y} \mathbb{E}_{\epsilon_{t+1}, \ldots, \epsilon_n} \sup_{f \in \mathcal{F}} \left\{ \mathbb{E}_{\tilde{y}_t \sim p_t} [\ell(f(x_t), y_t')] \
+ 2 \sum_{s=t+1}^{n} \epsilon_s \ell(f(x_{s-t}(\epsilon_{t+1:s-1})), y_{s-t}(\epsilon_{t+1:s-1})) - \sum_{s=1}^{t} \ell(f(x_s), y_s) \right\}
\end{align*}
\]
\[= 2 \sup_{y \in Y} \sup_{x} \sum_{s = t+1}^{n} \epsilon_s \ell(f(x_s-t(\epsilon_{t+1:s-1})), y_{s-t}(\epsilon_{t+1:s-1})) + \epsilon_t \ell(f(x_t), y_t) - \frac{1}{2} \sum_{s=1}^{t-1} \ell(f(x_s), y_s)\]

\[\leq \sup_{x \in X} \sup_{y \in Y} \epsilon_\sup_{x, y} \sup_{\epsilon_{t+1}, \ldots, \epsilon_n} \sum_{s = t+1}^{n} \epsilon_s \ell(f(x_s-t(\epsilon_{t+1:s-1})), y_{s-t}(\epsilon_{t+1:s-1})) + \epsilon_t \ell(f(x_t), y_t) - \sum_{s=1}^{t-1} \ell(f(x_s), y_s)\]

Put the \(x_t\) that achieves the supremum as the root of a new tree of depth \(n - t + 1\) and its left sub-tree is the \(x^+\) tree that attains supremum when \(\epsilon_t = -1\) and right sub-tree is the one that attains supremum when \(\epsilon_t = -1\). Similarly for the \(y_t\)’s, hence,

\[= \sup_{x, y} \epsilon_{t:n} \sup_{f \in F} \left\{ 2 \sum_{s = t+1}^{n} \epsilon_s \ell(f(x_s-t(\epsilon_{t:s-1})), y_{s-t}(\epsilon_{t:s-1})) - \sum_{s=1}^{t-1} \ell(f(x_s), y_s) \right\} = \text{Rad}_n (x_{1:t-1}, y_{1:t-1})\]

This shows admissibility. From the earlier proposition, regret is bounded by

\[\mathbb{E}[R_n] \leq \frac{2}{n} \text{Rad}_n (\cdot) = \frac{1}{n} \sup_{x, y} \mathbb{E}_\epsilon \left[\sup_{f \in F} \sum_{s = 1}^{n} \epsilon_s \ell(f(x_s(\epsilon_{1:s-1})), y_s(\epsilon_{1:s-1})) \right] = 2R_n^n (\ell \circ F)\]

Notice the similarity of proof above with the proof of upper bounding minimax rate by sequential Rademacher complexity. It is in fact a one step at a time version.

4 The Recipe

Recipe

- Start with sequential Rademacher complexity relaxation
- Replace by an appropriate upper bound (relaxation)
- Check the admissibility condition
- Solve for the strategy using the relaxation
• Basically the proof we used to bound sequential Rademacher complexity of various problems hide in them a hierarchy of relaxations. We shall review these to derive algorithms

• We shall recover several known algorithms, some we reviewed earlier in class, but we in fact can obtain, better parameter free version of these by stopping at an earlier step in the proof of the bound so we get tighter bounds but also tractable relaxations.

• Admissibility condition easy to check based on minimax theorem once we swap roles of players for round t.