1 Recap : Online Learning

For \(t = 1 \) to \(n \)

Instance \(x_t \in \mathcal{X} \) is provided

Learner picks \(\hat{y}_t \in \mathcal{Y} \) (or randomized version \(q_t \in \Delta(\mathcal{Y}) \))

True label \(y_t \in \mathcal{Y} \) is revealed and learner pays loss \(\ell(\hat{y}_t, y_t) \)

end

\[
R_n = \frac{1}{n} \sum_{t=1}^{n} \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t)
\]

If we use randomized algorithm then, on each round, label \(\hat{y}_t \) is drawn from \(q_t \). In this case, we wish to bound regret defined as :

\[
R_n = \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t)] - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t)
\]

A simple application of Hoeffding-Azuma can in fact turn the above statement in to a high probability statement of form, for any \(\delta > 0 \) with probability at least \(1 - \delta \) over the randomization of the learning algorithm,

\[
R_n \leq \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}_{\hat{y}_t \sim q_t} [\ell(\hat{y}_t, y_t)] - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) + \sqrt{\frac{\log 1/\delta}{n}}
\]

1.1 Halving : Realizable Online Binary Classification, finite class \(\mathcal{F} \)

Assume \(\mathcal{Y} = \{\pm 1\} \). Also assume that \(y_t = f^*(x_t) \) where \(f^* \in \mathcal{F} \) is unknown to the learner.

At round \(t \) given \(x_t \) predict with majority of consistent hypotheses. That is given past data define set of consistent hypotheses as

\[
\mathcal{F}_t = \{ f \in \mathcal{F} : \forall i < t, f(x_i) = y_i \}
\]

Given \(x_t \) we predict :

\[
\hat{y}_t = \text{sign} \left(\sum_{f \in \mathcal{F}_t} f(x_t) \right)
\]
For the above procedure, we have that
\[
\frac{1}{n} \sum_{t=1}^{n} \ell(\hat{y}_t, y_t) \leq \frac{\log_2 |\mathcal{F}|}{n}
\]

Why? Notice that if we make a mistake in our prediction at round \(t \), \(|\mathcal{F}_{t+1}| \leq \frac{1}{2} |\mathcal{F}_t| \). Hence total number of mistakes can’t be larger than \(\log_2 |\mathcal{F}| \)

2 Experts/Exponential Weights Algorithm

Algorithm: \(q_1(f) = 1/|F| \). Further, each round we update the distribution over experts as,
\[
q_{t+1}(f) \propto q_t(f) e^{-\eta \ell(f(x_t), y_t)}
\]

Or in other words, \(q_{t+1}(f) = \frac{e^{-\eta \sum_{i=1}^{t} \ell(f(x_i), y_i)}}{\sum_{f' \in \mathcal{F}} e^{-\eta \sum_{i=1}^{t} \ell(f(x_i), y_i)}} \)

Claim 1.
\[
\sum_{t=1}^{n} E_{f \sim q_t} [\ell(f(x_t), y_t)] - \min_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell(f(x_t), y_t) \leq \sqrt{\frac{2 \log |\mathcal{F}|}{n}}
\]

Proof. We use the notation \(L_t(f) = \sum_{i=1}^{t} \ell(f(x_i), y_i) \). Define \(W_0 = |\mathcal{F}| \) and define \(W_t = \sum_{f \in \mathcal{F}} e^{-\eta L_t(f)} \).

Note that
\[
\log \left(\frac{W_n}{W_0} \right) = \log \left(\sum_{f \in \mathcal{F}} e^{-\eta L_n(f)} \right) - \log |\mathcal{F}|
\geq \log \left(\max_{f \in \mathcal{F}} e^{-\eta L_n(f)} \right) - \log |\mathcal{F}|
= -\eta \min_{f \in \mathcal{F}} \sum_{t=1}^{n} \ell(f(x_t), y_t) - \log |\mathcal{F}|
\]
On the other hand,
\[
\log \left(\frac{W_n}{W_0} \right) = \sum_{t=1}^{n} \log \left(\frac{W_t}{W_{t-1}} \right) = \sum_{t=1}^{n} \log \left(\frac{\sum_{f \in \mathcal{F}} e^{-\eta L_t(f)}}{\sum_{f \in \mathcal{F}} e^{-\eta L_{t-1}(f)}} \right)
\]
\[
= \sum_{t=1}^{n} \log \left(\sum_{f \in \mathcal{F}} e^{-\eta L_{t-1}(f)} \right) e^{-\eta \ell(f(x_t),y_t)}
\]
\[
= \sum_{t=1}^{n} \log \left(\mathbb{E}_{f \sim q_t} \left[e^{-\eta \ell(f(x_t),y_t)} \right] \right)
\]
\[
= \sum_{t=1}^{n} \log \left(\mathbb{E}_{f \sim q_t} \left[e^{-\eta (\ell(f(x_t),y_t) - \mathbb{E}_{f \sim q_t}[\ell(f(x_t),y_t)])} \right] \right)
\]
\[
= \sum_{t=1}^{n} \log \left(\mathbb{E}_{f \sim q_t} \left[e^{-\eta (\ell(f(x_t),y_t) - \mathbb{E}_{f \sim q_t}[\ell(f(x_t),y_t)])} \right] \right) \times e^{-\eta \mathbb{E}_{f \sim q_t}[\ell(f(x_t),y_t)]}
\]
\[
= \sum_{t=1}^{n} \log \left(\mathbb{E}_{f \sim q_t} \left[e^{-\eta (\ell(f(x_t),y_t) - \mathbb{E}_{f \sim q_t}[\ell(f(x_t),y_t)])} \right] \right) - \eta \sum_{t=1}^{n} \mathbb{E}_{f \sim q_t}[\ell(f(x_t),y_t)]
\]
Thus we conclude that
\[
\sum_{t=1}^{n} \mathbb{E}_{f \sim q_t}[\ell(f(x_t),y_t)] - \min_{f \in \mathcal{F}} {\sum_{t=1}^{n} \ell(f(x_t),y_t)} \leq \frac{\log |\mathcal{F}|}{\eta} + \frac{1}{\eta} \sum_{t=1}^{n} \log \left(\mathbb{E}_{f \sim q_t} \left[e^{-\eta (\ell(f(x_t),y_t) - \mathbb{E}_{f \sim q_t}[\ell(f(x_t),y_t)])} \right] \right)
\]
Note that for any zero mean RV X in the range $[-1, 1]$, $\mathbb{E} [e^{-\eta X}] \leq e^{\eta^2/2}$. Hence,
\[
\sum_{t=1}^{n} \mathbb{E}_{f \sim q_t}[\ell(f(x_t),y_t)] - \min_{f \in \mathcal{F}} {\sum_{t=1}^{n} \ell(f(x_t),y_t)} \leq \frac{\log |\mathcal{F}|}{\eta} + \frac{n \eta}{2}
\]
Picking $\eta = \sqrt{2 \log |\mathcal{F}|/n}$ concludes the statement.

\[
3 \quad \text{Learning Thresholds}
\]

Not learnable, (even in realizable case) why?

\[
4 \quad \text{Predicting Bit-sequences}
\]

Think of the online learning problem where on each round t we predict the next bit $y_t \in \{\pm 1\}$. Also say $\mathcal{F} \subset \{\pm 1\}^n$ and we want to minimize regret (in expectation) :
\[
\text{Reg}_n = \frac{1}{n} \sum_{t=1}^{n} \mathbb{1}_{\{\hat{y}_t \neq y_t\}} - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \mathbb{1}_{\{f_t \neq y_t\}}
\]

When can we ensure $\mathbb{E} [\text{Reg}_n] \to 0$? Let us denote the minimax rate as
\[
V_n = \min_{\text{algorithms}} \max_{\text{sequence}} \mathbb{E} [\text{Reg}_n]
\]

3
Claim 2.

\[
V_n = \frac{1}{2n} \mathbb{E}_\epsilon \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^n f_t \epsilon_t \right]
\]

Proof. The basic idea is to write down the minimax rate in a recursive form and get a characterization for it. To this end, say you had already played rounds 1 to \(n - 1 \) optimally, then, on the last two rounds, what are the optimal moves for both the players. We write this value given \(y_1, \ldots, y_{n-1} \) were already produced as:

\[
V_n(y_1, \ldots, y_{n-1}) = \min_{q_n \in [0,1]} \sup_{y_n \in \{\pm 1\}} \{ \mathbb{E}_{\tilde{y}_n \sim q_n} [1_{\tilde{y}_n \neq y_n}] - \inf_{f \in \mathcal{F}} \sum_{t=1}^n 1_{\{f_t \neq y_t\}} \}
\]

That is on the last round, the learner picks distribution \(q_n \) that minimizes loss at the last step while the adversary picks \(y_n \) that maximizes the loss at last step while also minimizes loss of the target we are comparing our regret against. In fact if we define \(V_n(y_1, \ldots, y_n) = -\inf_{f \in \mathcal{F}} \sum_{t=1}^n 1_{\{f_t \neq y_t\}} \) then we see that

\[
V_n(y_1, \ldots, y_{n-1}) = \min_{q_n \in [0,1]} \sup_{y_n \in \{\pm 1\}} \{ \mathbb{E}_{\tilde{y}_n \sim q_n} [1_{\tilde{y}_n \neq y_n}] + V_n(y_1, \ldots, y_n) \}
\]

Thus we see that,

\[
V_n(y_1, \ldots, y_{n-1}) = \min_{q_n \in [0,1]} \sup_{y_n \in \{\pm 1\}} \{ q_n [1 \neq y_n] + (1 - q_n) [1 = y_n] + V_n(y_1, \ldots, y_n) \}
\]

\[
= \min_{q_n \in [0,1]} \max \{ (1 - q_n) + V_n(y_1, \ldots, y_{n-1} + 1), q_n + V_n(y_1, \ldots, y_{n-1} - 1) \}
\]

Solution is to pick \(q_n \) such that the two terms are equal. Hence

\[
V_n(y_1, \ldots, y_{n-1}) = \frac{1}{2} + \frac{V_n(y_1, \ldots, y_{n-1} + 1) + V_n(y_1, \ldots, y_{n-1} - 1)}{2}
\]

\[
= \frac{1}{2} + \mathbb{E}_\epsilon [V_n(y_1, \ldots, y_{n-1}, \epsilon_n)]
\]

Now recursively we continue as

\[
V_n(y_1, \ldots, y_{n-2}) = \min_{q_{n-1} \in [0,1]} \sup_{y_{n-1} \in \{\pm 1\}} \{ q_{n-1} [1 \neq y_{n-1}] + (1 - q_{n-1}) [1 = y_{n-1}] + V_n(y_1, \ldots, y_{n-1}) \}
\]

\[
= \frac{1}{2} + \mathbb{E}_{\epsilon_{n-1}} [V_n(y_1, \ldots, y_{n-2}, \epsilon_{n-1})]
\]

Proceeding as follows we conclude that:

\[
V_n(\cdot) = \mathbb{E}_{\epsilon_1} [V_n(\epsilon_1)] = \ldots = \mathbb{E}_{\epsilon_n} [V_n(\epsilon_1, \ldots, \epsilon_n)]
\]

Hence we conclude that:

\[
\text{Minimax}_n = \frac{V_n(\cdot)}{n} = \frac{1}{2} + \frac{1}{n} \mathbb{E}_\epsilon \left[-\inf_{f \in \mathcal{F}} \sum_{t=1}^n 1_{\{f_t \neq \epsilon_t\}} \right]
\]

\[
= \frac{1}{2} + \frac{1}{2n} \mathbb{E}_\epsilon \left[\sup_{f \in \mathcal{F}} \sum_{t=1}^n f_t \epsilon_t \right] - \frac{1}{2}
\]

\[
\square
\]
Prediction algorithm: the prediction algorithm corresponding to the above analysis is exactly the q_t that minimizes the recursion at each step and hence is given by

$$q_t = \arg\min_{q \in [0,1]} \max_{y_t \in \{\pm 1\}} \left\{ \mathbb{E}_{y_t \sim q} \left[\mathbb{1}\{y_t \neq y_t\} \right] + V_n(y_1, \ldots, y_t) \right\}$$

$$= \frac{1}{2} \left(1 + V_n(y_1, \ldots, y_{t-1}, +1) - V_n(y_1, \ldots, y_{t-1}, -1) \right)$$

$$= \frac{1}{2} \left(1 + \mathbb{E}_{\epsilon_{t+1:n}} [V_n(y_1, \ldots, y_{t-1}, +1, \epsilon_{t+1}, \ldots, \epsilon_n)] - \mathbb{E}_{\epsilon_{t+1:n}} [V_n(y_1, \ldots, y_{t-1}, -1, \epsilon_{t+1}, \ldots, \epsilon_n)] \right)$$

In fact, we can also show that the following randomized algorithm works. Draw $\epsilon_{t+1}, \ldots, \epsilon_n$ and set:

$$q_t = \frac{1}{2} \left(1 + \inf_{f \in F} \left\{ \sum_{j=1}^{t-1} \mathbb{1}\{f_j \neq y_t\} + \mathbb{1}\{f_t \neq 1\} + \sum_{i=t+1}^{n} \mathbb{1}\{f_i \neq \epsilon_i\} \right\} - \inf_{f \in F} \left\{ \sum_{j=1}^{t-1} \mathbb{1}\{f_j \neq y_t\} + \mathbb{1}\{f_t \neq -1\} + \sum_{i=t+1}^{n} \mathbb{1}\{f_i \neq \epsilon_i\} \right\} \right)$$