1 Overview

We spent the last two lecture learning about the growth function, VC dimension, the relationship between them, and the following theorem. In this lecture, we formally prove these results.\footnote{Several proofs of Theorem 1.1 are known in the literature. The proof approach we cover is similar to that outlined by Robert Schapire’s lecture notes.}

Theorem 1.1 (PAC Learnability of Infinite Concept Classes). Let A be an algorithm that learns a concept class C in the consistency model. Then, A learns the concept class C in the PAC learning model using a number of samples that satisfies

$$m \geq \frac{2}{\epsilon} \left(\log_2(\Pi_C(2m)) + \log_2\left(\frac{2}{\delta}\right) \right).$$

2 Proof of Theorem 1.1

In this lecture, we define and work with three “bad” events. First, is the actual failure event, as a function of the training set $S \sim D^m$, we would like to bound:

$$B(S) : \exists h \in C \text{ such that } \text{err}_S(h) = 0 \text{ and } \text{err}_D(h) > \epsilon.$$

Second, for the sake of analysis we also consider an independently drawn sample set $S' \sim D^m$. We define the following event that is a function of S and S'.

$$B'(S, S') : \exists h \in C \text{ such that } \text{err}_S(h) = 0 \text{ and } \text{err}_{S'}(h) > \epsilon/2.$$

Lastly, given two sample sets $S = \{x_1, \ldots, x_m\}$ and $S' = \{x'_1, \ldots, x'_m\}$, and a vector $\bar{\sigma} \in \{-1, +1\}^m$, we swap the members of S and S' as follows: For each $i \in [m]$, if $\sigma_i = +1$, we let $z_i = x_i$ and $z'_i = x'_i$, otherwise, we let $z_i = x'_i$ and $z'_i = x_i$. Then, let $T = \{z_1, \ldots, z_m\}$ and $T' = \{z'_1, \ldots, z'_m\}$. Given S, S', and $\bar{\sigma}$, we define the following bad event:

$$B''(S, S', \bar{\sigma}) : \exists h \in C \text{ s.t., } \text{err}_T(h) = 0 \text{ and } \text{err}_{T'}(h) > \epsilon/2, \text{ where } T \text{ and } T' \text{ correspond to } S, S', \bar{\sigma}.$$
When representing the probability of these events, we typically take $S \sim \mathcal{D}^m$, $S' \sim \mathcal{D}^m$, and $\sigma_i = +1$ or -1 with probability $1/2$ for all $i \in [m]$, all independently. When it is clear from the context, we suppress S, S', and σ in the statement of the probabilities.

To prove Theorem 1.1, it suffices to show that $\Pr_{S \sim \mathcal{D}}[B(S)] \leq \delta$. We do this by first bounding the probability of event B in terms of B' and then in terms of B''. We then argue that because B'' only depends on the empirical error on T and T' and not the true error, we can union bound only on the number of unique labelings produced on T and T', which is bounded by the growth function.

Claim 2.1. If $m > \frac{8}{\epsilon}$, then

$$\Pr_{S, S' \sim \mathcal{D}^m}[B'(S, S') \mid B(S)] \geq \frac{1}{2}$$

Proof. Suppose $B(S)$ holds. Then take an h that is consistent with S, i.e., $\text{err}_S(h) = 0$, and $\text{err}_\mathcal{D}(h) > \epsilon$. Since S' is drawn i.i.d. from \mathcal{D},

$$\mathbb{E}_{S' \sim \mathcal{D}^m}[\text{err}_{S'}(h)] = \text{err}_\mathcal{D}(h) > \epsilon.$$

Furthermore, $\text{err}_{S'}(h)$ is the sample average of m i.i.d. bernoulli variables. Recall that Chernoff bound states that for X_1, \ldots, X_m bernoulli random variables with expectation μ,

$$\Pr\left[\frac{1}{m} \sum_{i \in [m]} X_i \leq \frac{\mu}{2}\right] \leq \exp\left(-\frac{m\mu}{8}\right)$$

Replacing $\mu > \epsilon$, we have that $\Pr[\text{err}_{S'}(h) \leq \epsilon/2] \leq \frac{1}{2}$. This proves the claim. \qed

Note that Claim 2.1 immediately implies that $\Pr_{S \sim \mathcal{D}^m}[B(S)] \leq \Pr_{S, S' \sim \mathcal{D}^m}[B'(S, S')]$, because

$$\frac{\Pr[B'(S, S')]}{\Pr[B(S)]]} \geq \frac{\Pr[B'(S, S') \cap B(S)]}{\Pr[B(S)]} = \Pr[B'(S, S') \mid B(S)].$$

Therefore, it suffices to bound $\Pr_{S, S' \sim \mathcal{D}^m}[B'(S, S')]$.

Claim 2.2. For i.i.d. sample sets $S \sim \mathcal{D}^m$ and $S' \sim \mathcal{D}^m$, and a vector $\bar{\sigma}$, where $\sigma_i = +1$ or -1 with probability $1/2$ for all $i \in [m]$ independently, we have

$$\Pr_{S, S'}[B'(S, S')] = \Pr_{S, S', \bar{\sigma}}[B''(S, S', \bar{\sigma})].$$

Proof. This is true because (T, T') and (S, S') are identically distributed. \qed

Claim 2.3. For any $S, S' \in \mathcal{X}^m$ and any h that is fixed (independently of $\bar{\sigma}$), we have

$$\Pr_{\bar{\sigma}}[\text{err}_T(h) = 0 \text{ and } \text{err}_{T'}(h) > \epsilon/2 \mid S, S'] \leq 2^{-m\epsilon/2}$$
Proof. Consider the predictions of \(h \) on \(S \) and \(S' \) as follows.

\[
\begin{align*}
&h(x_1), h(x_2), \ldots, h(x_m) \\
&h(x'_1), h(x'_2), \ldots, h(x'_m)
\end{align*}
\]

First, note that if there is a column with both predictions wrong then \(\text{err}_T(h) = 0 \) can never happen, and the desired probability would be 0. Similarly, if more than \((1 - \frac{\epsilon}{2})m\) of the columns have both predictions right, \(\text{err}_T'(h) \leq \frac{\epsilon}{2} \), so again the desired probability would be 0. Thus, at least \(r \geq \frac{m\epsilon}{2} \) columns have one correct and one incorrect prediction. If \(\text{err}_T(h) = 0 \), it must happen that in all such columns, \(\sigma_i \) must ensure that the right prediction goes to \(T \) and the wrong one goes \(T' \). This happens with probability at most \(2^{-r} \leq 2^{-m\epsilon/2} \).

\[\square\]

Claim 2.4. For any \(S, S' \in \mathcal{X}^m \),

\[
\Pr_{\vec{\sigma}} \left[\exists h \in C, \text{err}_T(h) = 0 \text{ and } \text{err}_T'(h) > \frac{\epsilon}{2} \mid S, S' \right] \leq \Pi_C(2m)2^{-m\epsilon/2}
\]

Proof. Given a set \(S \), define \(C'(S) \subseteq C \) to be a set of size \(|C[S]| \) where we choose one (representative) hypothesis for each different labeling of \(C \) on \(S \).

\[
L.H.S = \Pr_{\vec{\sigma}} \left[\exists h \in C, \text{err}_T(h) = 0 \text{ and } \text{err}_T'(h) > \frac{\epsilon}{2} \mid S, S' \right]
\]

\[
= \Pr_{\vec{\sigma}} \left[\exists h \in C'(S \cup S'), \text{err}_T(h) = 0 \text{ and } \text{err}_T'(h) > \frac{\epsilon}{2} \mid S, S' \right]
\]

\[
\leq \sum_{h \in C'(S \cup S')} \Pr_{\vec{\sigma}} \left[\text{err}_T(h) = 0 \text{ and } \text{err}_T'(h) > \frac{\epsilon}{2} \mid S, S' \right]
\]

\[
\leq \Pi_C(2m)2^{-m\epsilon/2} \quad \text{(Claim 2.3)}
\]

Here \(\square \)

Putting together Claims 2.1, 2.2, 2.3, and 2.4, it suffices to find \(m \) such that

\[
2\Pi_C(2m)2^{-m\epsilon/2} \leq \delta,
\]

this gives us \(m \geq \frac{2}{\epsilon} \left(\log_2(\Pi_C(2m)) + \log_2(\frac{2}{\delta}) \right) \).

3 Sauer’s Lemma

In the last lecture, we demonstrated the importance of the following lemma.

Lemma 3.1 (Sauer’s Lemma). Consider any hypothesis class \(C \) and let \(d = \text{VCDim}(C) \). For all \(m \),

\[
\Pi_C(m) \leq \sum_{i=0}^{d} \binom{m}{i}.
\]
In this lecture, we derive the proof of this lemma.

Proof of Sauer’s Lemma. The following facts will be used in this proof:

Fact 3.2. \(\binom{m}{k} = \binom{m-1}{k} + \binom{m-1}{k-1} \)

Fact 3.3. \(\binom{m}{k} = 0 \), if \(k < 0 \) or \(k > m \).

We will prove Sauer’s Lemma by induction on \(m + d \). Let \(\Phi_d(m) = \sum_{i=0}^{d} \binom{m}{i} \).

Base Cases

- For \(m = 0 \) and all \(d \). \(\Pi_C(m) = 1 = \sum_{i=0}^{d} \binom{0}{i} = \Phi_d(m) \). This is a degenerate case, where we label the empty set.

- For \(d = 0 \) and all \(m \). \(\Pi_C(m) = 1 = \binom{m}{0} = \Phi_d(m) \). Not even shattering a point, so only one labeling is possible.

Inductive steps We assume that the lemma holds for any \(m' + d' < m + d \). We need to show that for any \(S \), \(|C[S]| \leq \Phi_d(m) \). To prove this, we construct two new hypothesis classes that are defined on one fewer instance and apply our induction hypothesis. Take any \(S = \{x_1, \ldots, x_m\} \) and let \(S' = \{x_1, \ldots, x_{m-1}\} \) be the domain of two new hypothesis classes \(C_1 \) and \(C_2 \).

Consider the predictions of \(h \in C \) on \(S \), by consider \(C[S] \). The labeling in \(C[S] \) are all unique and come in one of the following forms:

- **Pairs:** where there are \(h \) and \(h' \) such that, for all \(i \in [m - 1] \), \(h(x_i) = h'(x_i) \) and \(h(x_m) \neq h'(x_m) \). For these pairs, we construct a function \(g : \mathcal{X}' \to \mathcal{Y} \), that is defined similarly as \(h \) and \(h' \), except that it is not defined on \(x_{m} \). We add \(g \) to both \(C_1 \) and \(C_2 \).

- **Singleton:** For \(h \) where there is no \(h' \) that satisfies the pair condition. For these we construct a function \(g : \mathcal{X}' \to \mathcal{Y} \), that is the same as \(h \) except not defined on \(x_m \). We add \(g \) only to \(C_1 \).

Note that, the number of unique labelings in \(C \) is preserved, so \(|C[S]| = |C_1| + |C_2| \). See the following figure for an example of this construction.

<table>
<thead>
<tr>
<th>(C[S])</th>
<th>(C_1)</th>
<th>(C_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1, x_2, x_3, x_4, x_5)</td>
<td>(x_1, x_2, x_3, x_4)</td>
<td>(x_1, x_2, x_3, x_4)</td>
</tr>
<tr>
<td>(h_1)</td>
<td>0 1 1 1 0</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>(h_2)</td>
<td>0 1 1 1 1</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>(h_3)</td>
<td>1 0 0 1 1</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>(h_4)</td>
<td>1 0 0 1 0</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>(h_5)</td>
<td>1 1 1 0 0</td>
<td>1 1 1 0</td>
</tr>
</tbody>
</table>
Moreover, notice that if a set is shattered by \(C_1 \) then it is also shattered by \(C \) because each labeling in \(C[S] \) can be generated using the same labeling (while ignoring \(x_m \)) in \(C_1 \). So,

\[
\text{VCDim}(C_1) \leq \text{VCDim}(C) = d.
\]

Furthermore, if some set \(T \) is shattered by \(C_2 \), then \(T \cup \{x_m\} \) is shattered by \(C \). This is because every labeling in \(C_2 \) refers to two labelings in \(C \), where the labels on \(x_1, \ldots, x_{m-1} \) are the same and \(x_m \) is labeled in two different ways. Hence, \(\text{VCDim}(C) \geq \text{VCDim}(C_2) + 1 \), which implies

\[
\text{VCDim}(C_2) \leq d - 1.
\]

Now, by induction we have that \(|C_1| = |C_1[S']| \leq \Phi_d(m - 1) \) and \(|C_2| = |\Pi_{C_2}(m - 1) \leq \Phi_{d-1}(m - 1) \). We have

\[
|C[S]| = |C_1| + |C_2| \\
\leq \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d-1} \binom{m-1}{i} \\
= \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d} \binom{m-1}{i-1} \\
= \sum_{i=0}^{d} \binom{m}{i} \\
= \Phi_d(m).
\]

\(\square \)