Counterfactual Model for Learning

CS6780 – Advanced Machine Learning
Spring 2019
Thorsten Joachims
Cornell University

Reading:

Interactive System Schematic
Utility: $U(\pi_0)$

News Recommender
- Context x:
 - User
- Action y:
 - Portfolio of news articles
- Feedback $\delta(x,y)$:
 - Reading time in minutes

Ad Placement
- Context x:
 - User and page
- Action y:
 - Ad that is placed
- Feedback $\delta(x,y)$:
 - Click / no-click

Search Engine
- Context x:
 - Query
- Action y:
 - Ranking
- Feedback $\delta(x,y)$:
 - Click / no-click

Log Data from Interactive Systems
- Data
 $$S = \{(x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n)\}$$
 - Partial Information (aka “Contextual Bandit”)
- Properties
 - Contexts x_i drawn i.i.d. from unknown $P(X)$
 - Actions y_i selected by existing system $\pi_0: X \rightarrow Y$
 - Feedback δ_i from unknown function $\delta: X \times Y \rightarrow \mathbb{R}$
Goal

Use interaction log data
\[S = \{(x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n)\} \]
- for evaluation of system \(\pi \)
 - Offline estimate of online performance of some system \(\pi \).
 - System \(\pi \) can be different from \(\pi_0 \) that generated log.
- for learning new system \(\pi \)

Evaluation: Outline

- Offline Evaluating of Online Metrics
 - A/B Testing (on-policy)
 - Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Imputation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Online Performance Metrics

Example metrics
- CTR
- Revenue
- Time-to-success
- Interleaving
- Etc.

Correct choice depends on application and is not the focus of this lecture.

This lecture: Metric encoded as \(\delta(x, y) \) [click/payoff/time for \((x, y)\) pair]

System

- Definition [Deterministic Policy]:
 Function
 \[y = \pi(x) \]
 that picks action \(y \) for context \(x \).
- Definition [Stochastic Policy]:
 Distribution
 \[\pi(y|x) \]
 that samples action \(y \) given context \(x \)

System Performance

Definition [Utility of Policy]:
The expected reward / utility \(U(\pi) \) of policy \(\pi \) is
\[U(\pi) = \int \int \delta(x, y) \pi(y|x)P(x) \, dx \, dy \]

Online Evaluation: A/B Testing

Given \(S = \{(x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n)\} \) collected under \(\pi_0 \)
\[\bar{U}(\pi_0) = \frac{1}{n} \sum_{i=1}^{n} \delta_i \]

A/B Testing
- Deploy \(\pi_1 \): Draw \(x \sim P(X) \), predict \(y \sim \pi_1(y|x) \), get \(\delta(x, y) \)
- Deploy \(\pi_2 \): Draw \(x \sim P(X) \), predict \(y \sim \pi_2(y|x) \), get \(\delta(x, y) \)
- ...
- Deploy \(\pi_{|H|} \): Draw \(x \sim P(X) \), predict \(y \sim \pi_{|H|}(y|x) \), get \(\delta(x, y) \)
Pros and Cons of A/B Testing

- **Pro**
 - User centric measure
 - No need for manual ratings
 - No user/expert mismatch

- **Cons**
 - Requires interactive experimental control
 - Risk of fielding a bad or buggy \(\pi \)
 - Number of A/B Tests limited
 - Long turnaround time

Approach 1: “Model the world”
- Imputation via reward prediction
- Counterfactual model and selection bias
- Inverse propensity scoring (IPS) estimator

Approach 2: “Model the bias”
- Regression for reward prediction
- Offline Evaluating of Online Metrics

Evaluating Online Metrics Offline

- Online: On-policy A/B Test
- Offline: Off-policy Counterfactual Estimates

Approach 1: Reward Predictor
- Idea:
 - Use \(S = \{ (x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n) \} \)
 from \(\pi_0 \) to estimate reward predictor \(\hat{\delta}(x, y) \)
- Deterministic \(\pi \): Simulated A/B Testing with predicted \(\hat{\delta}(x, y) \)
 - For actions \(y^i = \pi(x_i) \) from new policy \(\pi \), generate predicted log \(S^* = \{ (x_1, y_1, \hat{\delta}(x_1, y_1)), ..., (x_n, y_n, \hat{\delta}(x_n, y_n)) \} \)
 - Estimate performance of \(\pi \) via \(\bar{U}_{sp}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \hat{\delta}(x_i, y_i) \)
- Stochastic \(\pi \): \(\bar{U}_{sp}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{d} \hat{\delta}(x_i, y_j) \pi(y_j|x_i) \)

Regression for Reward Prediction

1. Represent via features \(\Psi(x, y) \)
2. Learn regression based on \(\Psi(x, y) \) from \(S \) collected under \(\pi_0 \)
3. Predict \(\hat{\delta}(x, y') \) for \(y' = \pi(x) \) of new policy \(\pi \)

News Recommender: Exp Setup

- **Context** X: User profile
- **Action** Y: Ranking
 - Pick from 7 candidates to place into 3 slots
- **Reward** \(\delta \): “Satisfaction”
 - Complicated hidden function
- **Logging policy** \(\pi_0 \): Non-uniform randomized logging system
 - Placket-Luce “explore around current production ranker”
News Recommender: Results

RP is inaccurate even with more training and logged data

Problems of Reward Predictor

• Modeling bias
 – choice of features and model
• Selection bias
 – π₀'s actions are over-represented

\[\bar{U}_{rp}(\pi) = \frac{1}{n} \sum \delta(x_i, \pi(x_i)) \]

Evaluation: Outline

• Offline Evaluating of Online Metrics
 – A/B Testing (on-policy)
 \[\rightarrow \] Counterfactual estimation from logs (off-policy)
• Approach 1: “Model the world”
 – Imputation via reward prediction
• Approach 2: “Model the bias”
 – Counterfactual model and selection bias
 – Inverse propensity scoring (IPS) estimator

Approach “Model the Bias”

• Idea:
 Fix the mismatch between the distribution \(\pi_0(y|x) \) that generated the data and the distribution \(\pi(y|x) \) we aim to evaluate.

\[U(\pi_0) = \int \int \delta(x,y) \pi_0(y|x) \pi_0(x) \, dx \, dy \]

Counterfactual Model

• Example: Treating Heart Attacks
 – Treatments: \(Y \)
 • Bypass / Stent / Drugs
 – Chosen treatment for patient \(x_i \): \(y_i \)
 – Outcomes: \(\delta_i \)
 • 5-year survival: 0 / 1
 – Which treatment is best?

Counterfactual Model

• Example: Treating Heart Attacks
 – Treatments: \(Y \)
 • Bypass / Stent / Drugs
 – Chosen treatment for patient \(x_i \): \(y_i \)
 – Outcomes: \(\delta_i \)
 • 5-year survival: 0 / 1
 – Which treatment is best?

Placing Vertical

Click / no Click on SERP
Counterfactual Model

- Example: Treating Heart Attacks
 - Treatments: Y
 - Bypass / Stent / Drugs
 - Chosen treatment for patient \(x_i \): \(y_i \)
 - Outcomes: \(\delta_i \)
 - 5-year survival: 0 / 1
 - Which treatment is best?
 - Everybody Drugs
 - Everybody Stent
 - Everybody Bypass
 - → Drugs 3/4, Stent 2/3, Bypass 2/4 – really?

Assignment Mechanism

- Probabilistic Treatment Assignment
 - For patient i: \(n_i = y_i(x_i) \)
 - Selection Bias
- Inverse Propensity Score Estimator
 - \(\theta_{ips}(y) = \frac{1}{n_i \pi(x_i)} \)
 - Propensity: \(p_i = n_i \pi(x_i) \)
 - Unbiased: \(\bar{\theta}_{ips}(y) = \frac{\theta_{ips}(y)}{\hat{p}} \)
 - Example
 - \(\bar{\theta}_{drugs} = \frac{\theta_{drugs}}{\hat{p}} = 0.36 < 0.75 \)

Experimental vs Observational

- Controlled Experiment
 - Assignment Mechanism under our control
 - Propensities \(p_i = n_i \pi(x_i) \) known by design
 - Requirement: \(Y: \pi_0(y_i) = y_i(x_i) > 0 \) (probabilistic)
- Observational Study
 - Assignment Mechanism not under our control
 - Propensities \(p_i \) need to be estimated
 - Estimate \(\theta_{ips}(y_i) = n_i \pi_0(y_i) \) based on features \(x_i \)
 - Requirement: \(\theta_{ips}(y_i) = \theta_{ips}(y_i(x_i)) \) (unconfounded)

Conditional Treatment Policies

- Policy (deterministic)
 - Context \(x_i \) describing patient
 - Pick treatment \(y_i \) based on \(x_i: y_i = \pi(x_i) \)
 - Example policy:
 - \(\pi(A) = drugs, \pi(B) = stent, \pi(C) = bypass \)
- Average Treatment Effect
 - \(\tau(y) = \sum x_i \delta(x_i, \pi(x_i)) \)
- IPS Estimator
 - \(\theta_{ips}(y) = \frac{1}{n_i} \sum \delta(x_i, \pi(x_i)) / \hat{p} \)

Stochastic Treatment Policies

- Policy (stochastic)
 - Context \(x_i \) describing patient
 - Pick treatment \(y_i \) based on \(x_i: \pi(y_i|x_i) \)
 - Note
 - Assignment Mechanism is a stochastic policy as well!
- Average Treatment Effect
 - \(\tau(y) = \sum x_i \delta(x_i, \pi(y|x_i)) \)
- IPS Estimator
 - \(\theta_{ips}(y) = \frac{1}{n_i} \sum \pi(y|x_i) / \hat{p} \)

Counterfactual Outcome

- Average Treatment Effect of Treatment \(y \)
 - \(\tau(y) = \frac{1}{n_i} \sum \delta(x_i, y) \)
- Example
 - \(\tau(bypasses) = \frac{4}{11} \)
 - \(\tau(stent) = \frac{6}{11} \)
 - \(\tau(drugs) = \frac{3}{11} \)

Counterfactual Outcomes

- Control
 - \(x \)
 - \(Y \)
 - \(\pi(x) \)
 - \(\delta \)

Experimental Outcome

- Counterfactual
 - \(x \)
 - \(Y \)
 - \(\pi(x) \)
 - \(\delta \)
Counterfactual Model = Logs

<table>
<thead>
<tr>
<th>Context x_i</th>
<th>Treatment y_i</th>
<th>Outcome δ_i</th>
<th>Propensities p_i</th>
<th>New Policy π</th>
</tr>
</thead>
</table>

Average quality of new policy.

Evaluation: Outline

- Evaluating Online Metrics Offline
 - A/B Testing (on-policy)
 - Counterfactual estimation from logs (off-policy)
- Approach 1: “Model the world”
 - Estimation via reward prediction
- Approach 2: “Model the bias”
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator

System Evaluation via Inverse Propensity Score Weighting

Definition [IPS Utility Estimator]: Given $S = \{(x_i, y_i, \delta_i) \ldots, (x_n, y_n, \delta_n)\}$ collected under π_o,

$$\bar{U}_{IPS}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \delta_i \frac{\pi(y_i|x_i)}{\pi_o(y_i|x_i)}$$

→ Unbiased estimate of utility for any π, if propensity nonzero whenever $\pi(y_i|x_i) > 0$.

Note:
- If $\pi = \pi_o$, then online A/B Test with $\bar{U}_{IPS}(\pi_o) = \frac{1}{n} \sum_{i=1}^{n} \delta_i$
- Off-policy vs. On-policy estimation.

IPS Estimator is Unbiased

$$E[\bar{U}_{IPS}(\pi)] = \frac{1}{n} \sum_{i=1}^{n} \sum_{x_{-i}} \sum_{y_{-i}} \sum_{\delta_{-i}} p(x_{-i}, y_{-i}, \delta_{-i}) \bar{U}_{IPS}(\pi)$$

Unbiased:
- if $\forall x, y, \pi(y|x) \pi_o(x) > 0$ then $E[\bar{U}_{IPS}(\pi)] = E(\pi)$

News Recommender: Results

IPS eventually beats RP; variance decays as $O\left(\frac{1}{n}\right)$
Counterfactual Policy Evaluation

- Controlled Experiment Setting:
 - Log data: $D = \{(x_1, y_1, \delta_1, p_1), ..., (x_n, y_n, \delta_n, p_n)\}$
- Observational Setting:
 - Log data: $D = \{(x_1, y_1, \delta_1, z_1), ..., (x_n, y_n, \delta_n, z_n)\}$
 - Estimate propensities: $p_i = P(Y_i|X_i, Z_i)$ based on x_i and other confounders z_i

Goal: Estimate average treatment effect of new policy π.
- IPS Estimator
 $$\psi(\sigma) = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi(Y_i|X_i, Z_i)}{p_i}$$
or many others.

Evaluation: Summary

- Offline Evaluation of Online Metrics
 - A/B Testing (on-policy)
 - Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
 - Pro: low variance
 - Con: model mismatch can lead to high bias
- Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator
 - Pro: unbiased for known propensities
 - Con: large variance

From Evaluation to Learning

- Naïve "Model the World" Learning:
 - Learn: $\delta: x \times y \rightarrow \mathbb{R}$
 - Derive Policy:
 $$\pi(y|x) = \arg \min_{y'} \delta(x, y')$$
- Naïve "Model the Bias" Learning:
 - Find policy that optimizes IPS training error
 $$\pi = \arg \min_{\pi} \left[\sum_{i=1}^{n} \frac{\pi(Y_i|X_i)}{\pi(Y_i|X_i)} \delta_i \right]$$