Latent Variable Models

CS6780 – Advanced Machine Learning
Spring 2019

Thorsten Joachims
Cornell University

Reading: Murphy 11.1 – 11.4.2 and 11.4.7
Clustering as Mixture Modeling

• Setup
 – Learning Task: $P(X)$
 – Training Sample: $S = (\tilde{x}_1, \ldots, \tilde{x}_n)$
 – Hypothesis Space: $H = \{h_1, \ldots, h_{|H|}\}$
 • each describes $P(X|h_i)$ where h_i are parameters
 – Goal: learn which $P(X|h_i)$ produces the data

• What to predict?
 – Predict where new points are going to fall
Mixture of Gaussians

Gaussian Mixture Model (GMM):

The data X is generated by

$$P(X = \hat{x} | h) = \sum_{j=1}^{k} P(X = \hat{x} | Y = j, h) P(Y = j)$$

where each mixture component

$$P(X = \hat{x} | Y = j, h) = N(X = \hat{x} | \mu_j, \Sigma_j)$$

and $h = (\mu_1, \Sigma_1, ..., \mu_k, \Sigma_k)$.
EM Algorithm for (simplified) GMM

- Assume $P(Y)$ and k known and $\Sigma_i = 1$.

- REPEAT

 \[P(Y = j | X = \tilde{x}_i, \hat{\mu}_1, \ldots, \hat{\mu}_k) = \frac{P(X = \tilde{x}_i | Y = j, \tilde{\mu}_j)P(Y = j)}{\sum_{l=1}^{k} P(X = \tilde{x}_i | Y = l, \tilde{\mu}_l)P(Y = l)} = \frac{e^{-0.5(\tilde{x}_i - \tilde{\mu}_j)^2}P(Y = j)}{\sum_{l=1}^{k} e^{-0.5(\tilde{x}_i - \tilde{\mu}_l)^2}P(Y = l)} \]

 \[\hat{\mu}_j = \frac{\sum_{i=1}^{n} P(Y = j | X = \tilde{x}_i, \hat{\mu}_1, \ldots, \hat{\mu}_k)\tilde{x}_i}{\sum_{i=1}^{n} P(Y = j | X = \tilde{x}_i, \hat{\mu}_1, \ldots, \hat{\mu}_k)} \]
Mixture of “X”

General Mixture Model:
The data X is generated by

$$P(X = \hat{x}|h) = \sum_{j=1}^{k} P(X = \hat{x}|Y = j, h)P(Y = j)$$

where each mixture component $P(X = \hat{x}|Y = j, h)$ is

- Gaussian: $N(X = \hat{x}|\mu_j, \Sigma_j)$ [real vectors]
- Independent Bernoullis: $\text{Ber}(X = \hat{x}|\mu_j)$ [bitvectors]
- Independent Poisson: $\text{Poisson}(X = \hat{x}|\mu_j)$ [counts]
- Multinomial: $\text{Mul}(X = \hat{x}|\mu_j, l)$ [counts]

and h collects the respective parameters.
Latent Variable Models

• Data: \((x_1, z_1), \ldots, (x_n, z_n)\) where
 – \(x_i\) are observed and
 – \(z_i\) are unobserved (i.e. latent) (the \(y_i\) in mixture).

• Approach: Maximum likelihood (or MAP) by marginalizing over the \(z_i\)

\[
l(h) = \sum_{i=1}^{n} \log P(x_i|h) = \sum_{i=1}^{n} \log \left[\sum_{z_i} P(x_i, z_i|h) \right]
\]
General EM Algorithm

- Data: \((x_1, z_1), \ldots, (x_n, z_n)\)
- Auxiliary Function:

\[
Q(h|q) = \sum_i E_{z_i \sim q_i} [\log P(x_i, z_i|h)] + \text{Ent}(q_i)
\]

- Algorithm:
 - E-Step: Compute distribution \(q_i^t\) of each \(z_i\) based on current \(h^t\)
 - M-Step: Maximize \(Q(h|q^t)\) to get \(h^{t+1}\)
- Convergence:

\[
l(h^{t+1}) \geq Q(h^{t+1}|q^t) \geq Q(h^t|q^t) = l(h^t)
\]
General EM for Mixture Models

• Model:
 \[P(X = x|h) = \sum_{j=1}^{k} P(X = x|Y = j, h)P(Y = j) \]
 - Component distributions \(P(X = \tilde{x}|Y = j, h) \)

• Algorithm
 - REPEAT
 - E-Step: \(P(Y = j|h) = \frac{P(X = \tilde{x}_i|Y = j, h)P(Y = j)}{\sum_{l=1}^{k} P(X = \tilde{x}_i|Y = l, h)P(Y = l)} \)
 - M-Step: Optimize Q with respect to h
Beyond Mixture Models

• Latent Variable Models for
 – Missing feature imputation (missing features)
 – Semi-supervised learning (missing labels)
 – Censored regression (mortality analysis)
 – Hidden Markov models with unobserved states (speech recognition)
 – Matrix factorization (recommender systems)