Supervised Learning vs. Unsupervised Learning

- **Supervised Learning**
 - Classification: partition examples into groups according to pre-defined categories
 - Regression: assign value to feature vectors
 - Requires labeled data for training

- **Unsupervised Learning**
 - Clustering: partition examples into groups when no pre-defined categories/classes are available
 - Signal separation: recover components of a mixed signal
 - Embeddings: find low dimensional representation of high dimensional data
 - Outlier detection: find unusual events (e.g. hackers)
 - Novelty detection: find changes in data
 - Only instances required, but no labels
Clustering

• Partition unlabeled examples into disjoint subsets of clusters, such that:
 – Examples within a cluster are similar
 – Examples in different clusters are different
• Discover new categories in an unsupervised manner (no sample category labels provided).
Applications of Clustering

• Exploratory data analysis
• Cluster retrieved documents in search engine
• Detecting near duplicates
 – Entity resolution
 • E.g. “Thorsten Joachims” == “Thorsten B Joachims”
 – Cheating detection
• Automated (or semi-automated) creation of taxonomies
 – E.g. phylogenetic tree
• Compression
Clustering Example
Clustering Example
Clustering Example
Clustering Example
Similarity (Distance) Measures

• Euclidian distance (L₂ norm):

\[L_2(\tilde{x}, \tilde{x}') = \sqrt{\sum_{i=1}^{N} (x_i - x'_i)^2} \]

• L₁ norm:

\[L_1(\tilde{x}, \tilde{x}') = \sum_{i=1}^{N} |x_i - x'_i| \]

• Cosine similarity:

\[\cos(\tilde{x}, \tilde{x}') = \frac{\tilde{x} \ast \tilde{x}'}{\|\tilde{x}\| \|\tilde{x}'\|} \]

• Kernels
Hierarchical Clustering

- Build a tree-based hierarchical taxonomy from a set of unlabeled examples.

- Recursive application of a standard clustering algorithm can produce a hierarchical clustering.
Agglomerative vs. Divisive Clustering

- **Agglomerative** (*bottom-up*) methods start with each example in its own cluster and iteratively combine them to form larger and larger clusters.
- **Divisive** (*top-down*) separate all examples immediately into clusters.
Hierarchical Agglomerative Clustering (HAC)

• Assumes a *similarity function* for determining the similarity of two clusters.

• Basic algorithm:

 • Start with all instances in their own cluster.
 • Until there is only one cluster:
 • Among the current clusters, determine the two clusters, c_i and c_j, that are most similar.
 • Replace c_i and c_j with a single cluster $c_i \cup c_j$

• The history of merging forms a binary tree or hierarchy.
Cluster Similarity

• How to compute similarity of two clusters each possibly containing multiple instances?
 – *Single link*: Similarity of two most similar members.
 – *Complete link*: Similarity of two least similar members.
 – *Group average*: Average similarity between members.
When computing cluster similarity, use maximum similarity of pairs:

\[\text{sim}(c_i,c_j) = \max_{x \in c_i, y \in c_j} \text{sim}(x, y) \]

→ Can result in “straggly” (long and thin) clusters due to chaining effect.
When computing cluster similarity, use minimum similarity of pairs:

\[\text{sim}(c_i, c_j) = \min_{x \in c_i, y \in c_j} \text{sim}(x, y) \]

→ Makes more “tight,” spherical clusters.
Computational Complexity of HAC

• In the first iteration, all HAC methods need to compute similarity of all pairs of n individual instances which is $O(n^2)$.

• In each of the subsequent $O(n)$ merging iterations,
 – must find smallest distance pair of clusters \rightarrow Maintain heap $O(n^2 \log n)$
 – it must compute the distance between the most recently created cluster and each other existing cluster. Can this be done in constant time?

$\rightarrow O(n^2 \log n)$ overall.
Computing Cluster Similarity

• After merging c_i and c_j, the similarity of the resulting cluster to any other cluster, c_k, can be computed by:

 – Single Link:

 $$\text{sim}((c_i \cup c_j), c_k) = \max(\text{sim}(c_i, c_k), \text{sim}(c_j, c_k))$$

 – Complete Link:

 $$\text{sim}((c_i \cup c_j), c_k) = \min(\text{sim}(c_i, c_k), \text{sim}(c_j, c_k))$$
Single-Link Example

Table 1: Distance Matrix

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>x5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1</td>
<td>0.8</td>
<td>0.2</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>x2</td>
<td>0.8</td>
<td>1</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>x3</td>
<td>0.2</td>
<td>0.1</td>
<td>1</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>x4</td>
<td>0.7</td>
<td>0.5</td>
<td>0.9</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>x5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>0.4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Distance Matrix

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>c1</th>
<th>x5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1</td>
<td>0.8</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>x2</td>
<td>0.8</td>
<td>1</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>c1</td>
<td>0.7</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>x5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3: Distance Matrix

<table>
<thead>
<tr>
<th></th>
<th>c2</th>
<th>c1</th>
<th>x5</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2</td>
<td>1</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>c1</td>
<td>0.7</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>x5</td>
<td>0.3</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4: Distance Matrix

<table>
<thead>
<tr>
<th></th>
<th>c3</th>
<th>x5</th>
</tr>
</thead>
<tbody>
<tr>
<td>c3</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>x5</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

1. **Merge x3, x4 replace with max**
2. **Merge x1, x2 replace with max**
3. **Merge c1, c2 replace with max**
4. **Merge c3 replace with max**
Group Average Agglomerative Clustering

- Use average similarity across all pairs within the merged cluster to measure the similarity of two clusters.

$$sim(c_i, c_j) = \frac{1}{|c_i \cup c_j|(|c_i \cup c_j| - 1)} \sum_{\tilde{x} \in (c_i \cup c_j)} \sum_{\tilde{y} \in (c_i \cup c_j): \tilde{y} \neq \tilde{x}} sim(\tilde{x}, \tilde{y})$$

- Compromise between single and complete link.
Computing Group Average Similarity

• Assume cosine similarity and normalized vectors with unit length.
• Always maintain sum of vectors in each cluster.

\[\bar{s}(c_j) = \sum_{\bar{x} \in c_j} \bar{x} \]

• Compute similarity of clusters in constant time:

\[
sim(c_i, c_j) = \frac{(\bar{s}(c_i) + \bar{s}(c_j)) \cdot (\bar{s}(c_i) + \bar{s}(c_j)) - (|c_i| + |c_i|)}{(|c_i| + |c_j|)(|c_i| + |c_j| - 1)}
\]
Non-Hierarchical Clustering

- K-means clustering ("hard")
- Mixtures of Gaussians and training via Expectation maximization Algorithm ("soft")
Clustering Criterion

- Evaluation function that assigns a (usually real-valued) value to a clustering
 - Clustering criterion typically function of
 - within-cluster similarity and
 - between-cluster dissimilarity

- Optimization
 - Find clustering that maximizes the criterion
 - Global optimization (often intractable)
 - Greedy search
 - Approximation algorithms
K-Means Algorithm

- Input: \(k = \text{number of clusters}, \) Euclidian distance \(d \)
- Select \(k \) random instances \(\{s_1, s_2, \ldots, s_k\} \) as seeds.
- Until clustering converges or other stopping criterion:
 - For each instance \(x_i \):
 - Assign \(x_i \) to the cluster \(c_j \) such that \(d(x_i, s_j) \) is min.
 - For each cluster \(c_j \) update the centroid of each cluster
 - \(s_j = \mu(c_j) \)

Note: Clusters represented via \textit{centroids}

\[
\bar{\mu}(c) = \frac{1}{|c|} \sum_{\bar{x} \in c} \bar{x}
\]
K-means Example
(k=2)

Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters
Converged!
Time Complexity

- Assume computing distance between two instances is $O(N)$ where N is the dimensionality of the vectors.
- Reassigning clusters for n points: $O(kn)$ distance computations, or $O(knN)$.
- Computing centroids: Each instance gets added once to some centroid: $O(nN)$.
- Assume these two steps are each done once for i iterations: $O(iknN)$.
- Linear in all relevant factors, assuming a fixed number of iterations.
Buckshot Algorithm

Problem

• Results can vary based on random seed selection, especially for high-dimensional data.
• Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.

• First randomly take a sample of instances of size $n^{1/2}$
• Run group-average HAC on this sample
• Use the results of HAC as initial seeds for K-means.
• Overall algorithm is efficient and avoids problems of bad seed selection.
Non-Hierarchical Clustering

- K-means clustering ("hard")
- Mixtures of Gaussians and training via Expectation maximization Algorithm ("soft")