Online Learning: Expert Setting
CS6780 – Advanced Machine Learning
Spring 2019
Thorsten Joachims
Cornell University
Reading: Shalev-Shwartz/Ben-David, 287-297

Online Classification Model

- Setting
 - Classification
 - Hypothesis space H with $h: X \rightarrow Y$
 - Measure misclassifications (i.e. zero/one loss)

- Interaction Model
 - Initialize hypothesis $h \in H$
 - FOR t from 1 to T
 - Receive x_t
 - Make prediction $\hat{y}_t = h(x_t)$
 - Receive true label y_t
 - Record if prediction was correct (e.g., $\hat{y}_t = y_t$)
 - Update h

(Online) Perceptron Algorithm

- Input: $S = ((x_1, y_1), \ldots, (x_n, y_n))$, $x_i \in \mathbb{R}^N$, $y_i \in \{-1, 1\}$
- Algorithm:
 - $w_0 = 0$, $k = 0$
 - FOR $i = 1$ TO n
 - IF $y_i (w^T_k \cdot x_i) < 0$ #### makes mistake
 - $w_{k+1} = w_k + y_i x_i$
 - $k = k + 1$
 - ENDIF
 - ENDFOR
- Output: w_k

Perceptron Mistake Bound

Theorem: For any sequence of training examples $S = ((x_1, y_1), \ldots, (x_n, y_n))$ with $R = \max \|x_i\|$, if there exists a weight vector w_{opt} with $\|w_{opt}\| = 1$ and $y_i (w_{opt} \cdot x_i) \geq \delta$ for all $1 \leq i \leq n$, then the Perceptron makes at most $\frac{R^2}{\delta^2}$ errors.

Expert Learning Model

- Setting
 - N experts named $H = \{h_1, \ldots, h_N\}$
 - Each expert h_i takes an action $y = h_i(x_t)$ in each round t and incurs loss $\Delta_{i,t}$
 - Algorithm can select which expert’s action to follow in each round

- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects expert h_{opt} according to strategy A_{w_k} and follows its action y
 - Algorithm incurs losses $\Delta_{opt} - \Delta_{i,t}$
 - Algorithm incurs loss $\Delta_{i,t}$
 - Algorithm updates w_k to w_{k+1} based on $\Delta_{i,t} - \Delta_{opt}$

Halving Algorithm

- Setting
 - N experts named $H = \{h_1, \ldots, h_N\}$
 - Binary actions $y = \{+1, -1\}$ given input x, zero/one loss
 - Perfect expert exists in H

- Algorithm
 - $V_{S_1} = H$
 - FOR t from 1 to T
 - Algorithm selects the same y as majority of $h_i \in V_{S_t}$
 - $V_{S_{t+1}} = V_{S_t}$ minus those $h_i \in V_{S_t}$ that were wrong

- Mistake Bound
 - How many mistakes can the Halving algorithm make before predicting perfectly?
Idea
- N experts named $H = \{h_1, ..., h_N\}$
- Compare performance of A to best expert i^* in hindsight.

Regret
- Overall loss of best expert i^* in hindsight is
 $$\Delta^* = \min_{i^*} \frac{1}{T} \sum_{t=1}^{T} \Delta_t^{i^*}$$
- Loss of algorithm A at time t is
 $$\Delta_t = \sum_{i \neq i^*} w_i \Delta_t$$

Exponentiated Gradient Algorithm for Expert Setting (EG)
Setting
- N experts named $H = \{h_1, ..., h_N\}$
- Any actions, any positive and bounded loss
- There may be no expert in H that acts perfectly

Algorithm
- Initialize $\tilde{w}_t = (1, ..., 1)$
- FOR t from 1 to T
 - Algorithm randomly picks i_t from $P(i_t = i) = w_i$
 - Experts incur losses $\Delta_t = \sum_i \tilde{w}_t \Delta_t$
 - Algorithm updates w for all experts i as
 $$\tilde{w}_t \Delta_t = \tilde{w}_t \exp(-\Delta_t)$$

Weighted Majority Algorithm (Deterministic)
Setting
- N experts named $H = \{h_1, ..., h_N\}$
- Binary actions $y = \{+1, -1\}$ given input x, zero/one loss
- There may be no expert in H that acts perfectly

Algorithm
- Initialize $w_1 = (1, 1, ..., 1)$
- FOR $t = 1$ TO T
 - Predict the same y as majority of $h_t \in H$, each weighted by w_t
 - FOR EACH $h_t \in H$
 - IF h_t incorrect THEN $w_{t+1} = w_t + \beta$
 - ELSE $w_{t+1} = w_t$

Regret Bound
- How close is the number of mistakes the Weighted Majority Algorithm makes to the number of mistakes of the best expert in hindsight?

Regret Bound for Exponentiated Gradient Algorithm
Theorem
The expected regret of the exponentiated gradient algorithm in the expert setting is bounded by

$$\text{ExpectedRegret}(T) \leq \sqrt{2T \log(|H|)}$$

where $\Delta \in [0, 1]$ and $\eta = \sqrt{2 \log(|H|)/T}$ and $T > 2 \log(|H|)$.

Expected Regret
- Overall loss of best expert i^* in hindsight is
 $$\Delta^* = \min_{i^*} \frac{1}{T} \sum_{t=1}^{T} \Delta_t^{i^*}$$
- Expected loss of algorithm $A(w_t)$ at time t is
 $$E_{A(w_t)}[\Delta_t] = w_t \Delta_t$$

for randomized algorithm that picks recommendation of expert i at time t with probability w_t.

- Regret is difference between expected loss of algorithm and best fixed expert in hindsight
 $$\text{ExpectedRegret}(T) = \sum_{t=1}^{T} w_t \Delta_t - \min_{i \neq i^*} \frac{1}{T} \sum_{t=1}^{T} \Delta_t$$

LaTeX Equations
- $\Delta^* = \min_{i^*} \frac{1}{T} \sum_{t=1}^{T} \Delta_t^{i^*}$
- $\Delta_t = \sum_{i \neq i^*} w_i \Delta_t$
- $\tilde{w}_t \Delta_t = \tilde{w}_t \exp(-\Delta_t)$
- $E_{A(w_t)}[\Delta_t] = w_t \Delta_t$
- $\text{ExpectedRegret}(T) \leq \sqrt{2T \log(|H|)}$
- $\Delta \in [0, 1]$ and $\eta = \sqrt{2 \log(|H|)/T}$ and $T > 2 \log(|H|)$.

Diagrams
- Diagrams illustrating the Exponentiated Gradient Algorithm and Weighted Majority Algorithm with detailed steps and equations.