Discriminative ERM Learning

- Modeling Step:
 - Select classification rules H to consider (hypothesis space)
- Training Principle:
 - Given training sample $(x_1, y_1), \ldots, (x_n, y_n)$
 - Find h from H with lowest training error \rightarrow Empirical Risk Minimization
 - Argument: generalization error bounds \rightarrow low training error leads to low prediction error, if overfitting is controlled.
- Examples: SVM, decision trees, Perceptron

Bayes Decision Rule

- Assumption:
 - learning task $P(X,Y)=P(Y|X) P(X)$ is known
- Question:
 - Given instance x, how should it be classified to minimize prediction error?
- Bayes Decision Rule (for zero/one loss):
 $$ h_{\text{Bayes}}(x) = \arg\max_{y \in Y} [P(Y = y | X = x)] $$
 $$ = \arg\max_{y \in Y} [P(Y = y, X = x)] $$

Generative vs. Conditional vs. ERM

- Empirical Risk Minimization
 - Find $h = \arg\min_{h \in H} \mathbb{E}_{(x,y)} L(h(x), y)$ s.t. overfitting control
 - Pro: directly estimate decision rule
 - Con: need to commit to loss, input, and output before training
- Discriminative Conditional Model
 - Find $P(Y|X)$, then derive $h(x)$ via Bayes rule
 - Pro: not yet committed to loss during training
 - Con: need to commit to input and output before training; learning conditional distribution is harder than learning decision rule
- Generative Model
 - Find $P(X,Y)$, then derive $h(x)$ via Bayes rule
 - Pro: not yet committed to loss, input, or output during training; often computationally easy
 - Con: Needs to model dependencies in X

Logistic Regression

- Data:
 - $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}, x \in \mathbb{R}^N$ and $y \in \{-1, +1\}$
- Model:
 - $P(y|x, w) = \text{Ber}(y \mid \text{sig}(w \cdot x))$
- Training objective:
 $$ \hat{w} = \arg\min_w \sum_{i=1}^n \log(1 + \exp(-y_i w \cdot x_i)) $$
- Algorithm:
 - Stochastic gradient descent, Newton, etc.

Regularized Logistic Regression

- Data:
 - $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}, x \in \mathbb{R}^N$ and $y \in \{-1, +1\}$
- Model:
 - $P(y|x, w) = \text{Ber}(y \mid \text{sig}(w \cdot x))$, $P(w) = N(w|0, \Sigma)$
- Training objective:
 $$ \hat{w} = \arg\min_w \frac{1}{2} w \cdot w + C \sum_{i=1}^n \log(1 + \exp(-y_i w \cdot x_i)) $$
- Algorithm:
 - Stochastic gradient descent, Newton, etc.
Softmax vs. Hinge Loss

Data:
- $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}, x \in \mathbb{R}^N$ and $y \in \mathbb{R}$

Model:
- $P(y|x, w) = N(y|w \cdot x, \Sigma)$

Training objective:
- $\hat{w} = \text{argmin}_w \frac{1}{2} w \cdot w + C \sum_{i=1}^n (w \cdot x_i - y_i)^2$

Algorithm:
- $\hat{w} = (\text{diag}(C) + X^T X)^{-1} X^T y$

Ridge Regression

• Data:
 - $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}, x \in \mathbb{R}^N$ and $y \in \mathbb{R}$

• Model:
 - $P(y|x, w) = N(y|w \cdot x, E), P(w) = N(w|0, \Sigma)$

• Training objective:
 - $\hat{w} = \text{argmin}_w \frac{1}{2} w \cdot w + C \sum_{i=1}^n (w \cdot x_i - y_i)^2$

• Algorithm:
 - $\hat{w} = (\text{diag}(C) + X^T X)^{-1} X^T y$

Discriminative Training of Linear Rules

- Soft Margin SVM
 - $R(w) = \frac{1}{2} w \cdot w$
 - $\Delta(y, y_i) = \max(0, 1 - y_i y)$

- Perceptron
 - $R(w) = 0$
 - $\Delta(y, y_i) = 0$

- Linear Regression
 - $R(w) = 0$
 - $\Delta(y, y_i) = (y - y_i)^2$

- Ridge Regression
 - $R(w) = \frac{1}{2} w \cdot w$
 - $\Delta(y, y_i) = (y - y_i)^2$

- Lasso
 - $R(w) = \frac{1}{2} \sum |w_j|$
 - $\Delta(y, y_i) = (y - y_i)^2$

- Regularized Logistic Regression / Conditional Random Field
 - $R(w) = \frac{1}{2} w \cdot w$
 - $\Delta(y, y_i) = \log(1 + e^{-y y_i})$