Support Vector Machines: Soft Margin and Duality

CS6780 – Advanced Machine Learning
Spring 2019
Thorsten Joachims
Cornell University

Reading: Schoelkopf/Smola Chapter 7.3, 7.5
Cristianini/Shawe-Taylor Chapter 2-2.1.1

Non-Separable Training Data

• Limitations of hard-margin formulation
 – For some training data, there is no separating hyperplane.
 – Complete separation (i.e. zero training error) can lead to suboptimal prediction error.

Soft-Margin Separation

Idea: Maximize margin and minimize training error.

Soft-Margin OP (Primal):
\[
\min_{\mathbf{w}, b} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{N} \xi_i
\]
\[s.t. \ y_1 (\mathbf{w}^T \mathbf{x}_1 + b) \geq 1 - \xi_1 \wedge \xi_1 \geq 0
\]
\[y_2 (\mathbf{w}^T \mathbf{x}_2 + b) \geq 1 - \xi_2 \wedge \xi_2 \geq 0
\]

• Slack variable \(\xi_i \) measures by how much \((x_i, y_i)\) fails to achieve margin \(\delta \)
• \(\sum \xi_i \) is upper bound on number of training errors
• \(C \) is a parameter that controls trade-off between margin and training error.

Soft-Margin OP (Primal):
\[
\min_{\mathbf{w}, b, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{N} \xi_i
\]
\[s.t. \ y_1 (\mathbf{w}^T \mathbf{x}_1 + b) \geq 1 - \xi_1 \wedge \xi_1 \geq 0
\]
\[y_2 (\mathbf{w}^T \mathbf{x}_2 + b) \geq 1 - \xi_2 \wedge \xi_2 \geq 0
\]

• \(\sum \xi_i \) is upper bound on number of training errors
• \(C \) is a parameter that controls trade-off between margin and training error.

Example Reuters “acq”: Varying C

<table>
<thead>
<tr>
<th>Training Sample</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training set 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Training set 2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Test set 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Test set 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Controlling Soft-Margin Separation

\(\sum \xi_i \) is upper bound on number of training errors
\(C \) is a parameter that controls trade-off between margin and training error.

Example: Margin in High-Dimension
SVM Solution as Linear Combination

- **Primal OP:**
 \[
 \text{minimize: } P(w, b, \xi) = \frac{1}{2} w^T w + C \sum_{i=1}^{n} \xi_i \\
 \text{subject to: } v_{i+1} = v_i + \xi_i, v_1 = 0, v_i \geq 0
 \]

 - **Theorem:** The solution \(\mathbf{w}^* \) can always be written as a linear combination
 \[
 \mathbf{w}^* = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i
 \]
 of the training vectors with \(0 \leq \alpha_i \leq C \).

- **Properties:**
 - Factor \(\alpha_i \) indicates "influence" of training example \((x_i, y_i)\).
 - \((x_i, y_i)\) is a Support Vector, if and only if \(\alpha_i > 0 \).
 - \(\xi_i < 0 \), then \(\alpha_i = C \).
 - \(\text{If } 0 < \alpha < C, \text{ then } \xi_i = 0. \)
 - \(\text{If } 0 < \alpha < C, \text{ then } y_i(y_i \mathbf{w}^* - b) - 1 \).
 - SVM-light outputs \(\alpha_i \) using the "-a" option

Dual SVM Optimization Problem

- **Primal Optimization Problem**
 \[
 \text{minimize: } P(w, b, \xi) = \frac{1}{2} w^T w + C \sum_{i=1}^{n} \xi_i \\
 \text{subject to: } v_{i+1} = v_i + \xi_i, v_1 = 0, v_i \geq 0
 \]

- **Dual Optimization Problem**
 \[
 \text{maximize: } D(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j) \\
 \text{subject to: } \sum_{i=1}^{n} \alpha_i = 0, v_{i+1} = 0, 0 \leq \alpha_i \leq C
 \]

- **Theorem:** If \(\mathbf{w}^* \) is the solution of the Primal and \(\alpha^* \) is the solution of the Dual, then
 \[
 \mathbf{w}^* = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i
 \]

Leave-One-Out (i.e. n-fold CV)

- **Training Set:** \(S = \{(x_1, y_1), ..., (x_n, y_n)\} \)
- **Approach:** Repeatedly leave one example out for testing.

\[
\begin{array}{c|c|c}
\text{Train on} & \text{Test on} & \text{Leave-one-out Error} \\
\hline
(x_1, y_1), (x_2, y_2), (x_3, y_3), ..., (x_i, y_i), (x_{i+1}, y_{i+1}), ..., (x_n, y_n) & (x_1, y_1), (x_2, y_2), (x_3, y_3), ..., (x_{i-1}, y_{i-1}), (x_{i+1}, y_{i+1}), ..., (x_n, y_n) & \hline
\end{array}
\]

\(h_i \) is the rule learned on \(S \setminus \{(x_i, y_i)\} \)

- **Estimator:** \(\text{Err}_{\text{leave-out}}(A) = \frac{1}{n} \sum_{i=1}^{n} d(h_i(x_i), y_i) \)

- **Question:** Is there a cheaper way to compute this estimate?

Necessary Condition for Leave-One-Out Error

- **Lemma:** For SVM, \(|h_i(\mathbf{x}_i) - y_i| = |2\alpha_i R^2 + \xi_i - 1| \)

- **Input:**
 - \(\alpha_i \) dual variable of example \(i \)
 - \(\xi_i \) slack variable of example \(i \)
 - \(\|\mathbf{x}_i\| \leq R \) bound on length

- **Example:**

\[
\begin{array}{c|c|c}
\text{Value of } 2\alpha_i R^2 + \xi_i & \text{Leave-one-out Error} \\
\hline
0.0 & \text{Must be Correct} \\
0.7 & \text{Must be Correct} \\
1.5 & \text{Error} \\
0.1 & \text{Must be Correct} \\
1.2 & \text{Correct} \\
\end{array}
\]
Case 1: Example is not SV
Criterion: \((\alpha_i = 0) \rightarrow (\xi_i = 0) \rightarrow (2 \alpha_i R^2 + \xi_i < 1) \rightarrow Correct\)

Case 2: Example is SV with Low Influence
Criterion: \((\alpha_i < 0.5/R^2 < C) \rightarrow (\xi_i = 0) \rightarrow (2 \alpha_i R^2 + \xi_i < 1) \rightarrow Correct\)

Case 3: Example has Small Training Error
Criterion: \((\alpha_i = C) \text{ and } (\xi_i < 1-2CR^2) \rightarrow (2 \alpha_i R^2 + \xi_i < 1) \rightarrow Correct\)

Experiment:
Reuters Text Classification
Experiment Setup
- 6451 Training Examples
- 6451 Test Examples to estimate true Prediction Error
- Comparison between Leave-One-Out upper bound and error on Test Set (average over 10 train/test splits)

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Retraining Steps (%)</th>
<th>CPU-Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reuters (n=6451)</td>
<td>0.58%</td>
<td>32.3</td>
</tr>
<tr>
<td>WebKB (n=2092)</td>
<td>20.42%</td>
<td>235.4</td>
</tr>
<tr>
<td>Ohsumed (n=10000)</td>
<td>2.56%</td>
<td>1132.3</td>
</tr>
</tbody>
</table>

Fast Leave-One-Out Estimation for SVMs
Lemma: Training errors are always Leave-One-Out Errors.
Algorithm:
- \((R,\alpha,\xi) = \text{trainSVM}(S_{train})\)
- FOR \((x,y) \in S_{train}\)
 - IF \(\xi > 1\) THEN loo++;
 - ELSE IF \((2 \alpha R^2 + \xi < 1)\) THEN loo = loo;
 - ELSE trainSVM\((S_{train} \setminus \{(x,y)\})\) and test explicitly

Experiment:
<table>
<thead>
<tr>
<th>Training Data</th>
<th>Retraining Steps (%)</th>
<th>CPU-Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reuters (n=6451)</td>
<td>0.58%</td>
<td>32.3</td>
</tr>
<tr>
<td>WebKB (n=2092)</td>
<td>20.42%</td>
<td>235.4</td>
</tr>
<tr>
<td>Ohsumed (n=10000)</td>
<td>2.56%</td>
<td>1132.3</td>
</tr>
</tbody>
</table>