Statistical Learning Theory: Generalization Error Bounds

CS6780 – Advanced Machine Learning
Spring 2019

Thorsten Joachims
Cornell University

Reading: Murphy 6.5.4
Schoelkopf/Smola Chapter 5 (beginning, rest later)
Questions in Statistical Learning Theory:

- How good is the learned rule after n examples?
- How many examples do I need before the learned rule is accurate?
- What can be learned and what cannot?
- Is there a universally best learning algorithm?

In particular, we will address:

What is the true error of h if we only know the training error of h?

- Finite hypothesis spaces and zero training error
- Finite hypothesis spaces and non-zero training error
- Infinite hypothesis spaces and VC dimension (later)
Can you Convince me of your Psychic Abilities?

• Game
 – I think of 4 bits
 – If somebody in the class guesses my bit sequence, that person clearly has telepathic abilities – right?

1 0 0 1
Can you Convince me of your Psychic Abilities?

• Game
 – I think of n bits
 – If somebody in the class guesses my bit sequence, that person clearly has telepathic abilities – right?

• Question:
 – If at least one of $|H|$ players guesses the bit sequence correctly, is there any significant evidence that he/she has telepathic abilities?
 – How large would n and $|H|$ have to be?
Discriminative Learning and Prediction

Reminder

- Goal: Find h with small prediction error $\text{Err}_P(h)$ over $P(X,Y)$.
- Discriminative Learning: Given H, find h with small error $\text{Err}_{\text{Strain}}(h)$ on training sample Strain.

Real-world Process $P(X,Y)$

Train Sample $S_{\text{train}} = (x_1, y_1), \ldots, (x_n, y_n)$

Test Sample $S_{\text{test}} = (x_{n+1}, y_{n+1}), \ldots$

- Training Error: Error $\text{Err}_{S_{\text{train}}}(h)$ on training sample.
- Test Error: Error $\text{Err}_{S_{\text{test}}}(h)$ on test sample is an estimate of $\text{Err}_P(h)$.
Useful Formulas

- **Binomial Distribution:** The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

 $$P(X = x|p,n) = \frac{n!}{r!(n-r)!} p^x (1-p)^{n-x}$$

- **Union Bound:**

 $$P(X_1 = x_1 \lor X_2 = x_2 \lor \cdots \lor X_n = x_n) \leq \sum_{i=1}^{n} P(X_i = x_i)$$

- **Unnamed:**

 $$1 - \epsilon \leq e^{-\epsilon}$$
Generalization Error Bound: Finite H, Zero Error

- Setting
 - Sample of n labeled instances S_{train}
 - Learning Algorithm L with a finite hypothesis space H
 - At least one $h \in H$ has zero prediction error $Err_p(h) = 0 \Rightarrow Err_{s_{\text{train}}}(h) = 0$
 - Learning Algorithm L returns zero training error hypothesis \hat{h} (i.e. ERM)

- What is the probability that the prediction error of \hat{h} is larger than ε?

\[P(Err_p(\hat{h}) \geq \varepsilon) \leq |H|e^{-\alpha n} \]

Training Sample S_{train}

$(x_1, y_1), \ldots, (x_n, y_n)$

L \rightarrow Learner \rightarrow \hat{h}

Test Sample S_{test}

$(x_{n+1}, y_{n+1}), \ldots$
Sample Complexity: Finite H, Zero Error

- **Setting**
 - Sample of n labeled instances S_{train}
 - Learning Algorithm L with a finite hypothesis space H
 - At least one $h \in H$ has zero prediction error ($\Rightarrow Err_{S_{\text{train}}}(h)=0$)
 - Learning Algorithm L returns zero training error hypothesis \hat{h} (i.e. ERM)

- How many training examples does L need so that with probability at least $(1-\delta)$ it learns an \hat{h} with prediction error less than ε?

$$n \geq \frac{1}{\varepsilon} \left(\log(|H|) - \log(\delta) \right)$$

Diagram:

Training Sample S_{train}

$$(x_1, y_1), \ldots, (x_n, y_n)$$

L_{train}

\hat{h}

Test Sample S_{test}

$$(x_{n+1}, y_{n+1}), \ldots$$
Example: Smart Investing

• **Task:** Pick stock analyst based on past performance.

• **Experiment:**
 – Review analyst prediction “next day up/down” for past 10 days. Pick analyst that makes the fewest errors.
 – Situation 1:
 • 2 stock analyst \{A1,A2\}, A1 makes 5 errors
 – Situation 2:
 • 5 stock analysts \{A1,A2,B1,B2,B3\}, B2 best with 1 error
 – Situation 3:
 • 1000 stock analysts \{A1,A2,B1,B2,B3,C1,...,C995\}, C543 best with 0 errors

• **Question:** Which analysts are you most confident in, A1, B2, or C543?
Hoeffding/Chebyshev's Bound:

For any distribution $P(X)$ where X can take the values 0 and 1, the probability that an average of an i.i.d. sample deviates from its mean p by more than ε is bounded as

$$P\left(\left|\frac{1}{n} \sum_{i=1}^{n} x_i - p\right| > \varepsilon\right) \leq 2e^{-2n\varepsilon^2}$$
Generalization Error Bound: Finite H, Non-Zero Error

- **Setting**
 - Sample of \(n \) labeled instances \(S \)
 - Learning Algorithm \(L \) with a finite hypothesis space \(H \)
 - \(L \) returns hypothesis \(\hat{h} = L(S) \) with lowest training error (i.e. ERM)

- **What is the probability that the prediction error of \(\hat{h} \) exceeds the fraction of training errors by more than \(\epsilon \)?**

\[
P \left(\left| \text{Err}_S(h_{\hat{L}(S)}) - \text{Err}_P(h_{\hat{L}(S)}) \right| \geq \epsilon \right) \leq 2|H|e^{-2\epsilon^2 n}
\]
Overfitting vs. Underfitting

With probability at least \((1-\delta)\):

\[
Err_P(h_{\mathcal{L}(S_{\text{train}})}) \leq Err_{S_{\text{train}}}(h_{\mathcal{L}(S_{\text{train}})}) + \sqrt{\frac{\ln(2|H|) - \ln(\delta)}{2n}}
\]